Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Графічні зображення розподілу частот.






Використання графіків сприяє виконанню таких завдань:

1) наочному зображенню сутності явища, яке вивчається;

2) системному аналізу явища;

3) популяризації результатів дослідження.

Як наслідок, досягається стислість узагальнення інформації, коли в конкретній формі виявляється динаміка явищ у системі різноманітних зв’язків з оточуючою дійсністю.

4.1. Полігон розподілу – ламана лінія, яка з’єднує певні точки (єдиний спосіб графічного зображення дискретних (перервних) статистичних розподілів. Умовою побудови полігону розподілу є визначення частоти (f) елементів. Наприклад: 2, 4, 4, 5, 3, 4, 5, 4. Внаслідок впорядкування низки отримуємо: 2 (елемент вибірки, п) – 1 (частота, f), 3 (п) – 1(f), 4 (п) – 4(f), 5(п) – 2(f). Тоді будується власне полігон розподілу, де п відкладається на осі абсцис (Х), а f – на осі ординат (Y).

4.2. Гістограма – графічне зображення у вигляді стовпців, в основі якого знаходиться полігон розподілу.

4.3. Лінійний графік – ламана лінія, яка з’єднує певні точки статистичних розподілів без визначення частот елементів вибірки

4.4. Діаграма – графічне зображення у вигляді стовпців, в основі якого знаходиться лінійний графік.

4.5. Секторна діаграма – розподіл сукупності на частини шляхом поділу круга.

5. Основні види середніх значень.

5.1. Середнє арифметичне (Мср.) – характеризує досліджувану сутність окремим числом; порівнює окремі величини з середнім значення, визначає тенденції розвитку певного явища; дає змогу обчислити інші статистичні показники, оскільки деякі з них опираються на середнє арифметичне; не аналізує сукупність різностороннє. Використовується більше для інтервальних шкал. [ Приклад: елементи вибірки – 2, 4, 8, 7, 4, 9, 5. Тоді Мср.=(2+4+8+7++4+9+5): 7, де 7 – кількісний склад вибірки. Тобто Мср. = 5, 57].

5.2. Медіана (Ме=(п+1)/2) – значення змінної, яке є середнім, центральним за положенням (місцем) у загальній впорядкованій низці елементів; застосовується для визначення точної середини низки; співпадає з Мср. у випадку симетричного розподілу. Використовується більше для порядкових шкал. [ Приклад 1: 2, 4, 5, 6, 3, 4, 6, 7, 8. Внаслідок впорядкування низки, яка є непарною за кількістю, отримуємо 2, 3, 4, 4, 5, 6, 6, 7, 8. Тоді (9+1): 2=5, де 9 (п) є кількісним складам вибірки. Тобто Ме у вибірці знаходиться на п’ятому місці і в даному випадку дорівнює 5. Приклад 2: якщо вибірка є парною за кількістю, наприклад має 10 елементів (2, 3, 4, 4, 4, 5, 5, 5, 6, 7), то процедура знаходження медіани має дещо інший вигляд. Використовуючи названу формулу, отримаємо Ме=(10+1): 2=5, 5, тобто місце медіани, яке знаходиться між елементами 4 і 5. Тоді Ме=(4+5): 2=4, 5].

5.3. Мода (Мо) – значення, яке найчастіше зустрічається у вибірці. [ Приклад 1: елементи вибірки 2, 3, 4, 5, 6, 7, 8, 8. тоді Мо=8, оскільки названий елемент найчастіше зустрічається. Емпіричне визначення моди можна також здійснювати на основі формули простої інтерполяції (передбачення):

Fмо – Fмо-1

Мо= Амо+а –––––––––––––––––––––––––––––

(Fмо – Fмо-1)+(Fмо – Fмо+1),

де Амо- початок модального інтервалу (у даному випадку – 8), а – величина, або ширина, модального розряду (1), Fмо – Fмо–1 – частота розряду, який знаходиться зліва від модального (1), Fмо – Fмо+1 – частота розряду, який знаходиться справа від модального (0), Fмо – частота модального розряду (2). Підставивши у формулу названі числа, отримуємо Мо=8+1(2–1/(2–1)(2+0))=8+1(1/2)=8, 5. Приклад 2. Якщо показників, які найчастіше зустрічається у вибірці декілька, то модальних значень буде стільки ж: елементи вибірки 2, 3, 4, 4, 4, 55, 5, 6. Тоді Мо 1 = 4, а Мо 2 = 5].

 



Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал