Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Рівняння Такагі. Рівняння для повільно змінних амплітуд поля.






Розглянемо перехід від хвильового рівняння (1.13) до системи рівнянь для повільно змінних амплітуд поля у випадку дифракції на ідеальному кристалі. Поляризуємість ідеального кристалу є трьохмірною періодичною функцією (скінченність розмірів кристалу в цьому випадку до уваги не береться):

,

де - довільний вектор трансляції кристалічної гратки. Значить, поляризуємість можна розкласти в ряд Фур’є за векторами оберненої гратки

. (1.14)

Вважатимемо, що вектор в (1.13) можна представити у вигляді розкладу за хвилями із залежними від координат амплітудами :

, (1.15)

де - хвильові вектори дифракційних хвиль в кристалі, які ми визначимо без врахування ефектів заломлення і взаємодії хвиль в кристалі згідно умови дифракції у вакуумі:

, . (1.16)

Тоді ефекти заломлення і взаємодії хвиль в кристалі повинні відобразитися в амплітудах . Умову дифракції (1.16) можна переписати у вигляді умови сингулярності розсіяних хвиль в координатному просторі, тоді воно приймає вигляд закону Вульфа-Брега

2dsinq=nl,

де d-період гратки вздовж вектору дифракції, q-кут Брега, n-порядок відбивання, l-довжина хвилі.

Рис.1. Геометричне представлення ідеалізованих умов фазового синхронізму хвиль (умови дифракції) у кристалі в просторі хвильових векторів. Штрихова лінія –умовний показ однієї з атомних площин.

 

Вважатимемо, що амплітуди міняються повільно в порівнянні з фазовими складовими exp() в (1.15). Підставимо (1.14) і (1.15) у рівняння (1.13) виконуючи відповідно певні операції. В результаті отримаємо

. (1.17)

Розглянемо першу складову в лівій частині рівняння (1.17)

Оскільки ми вважаємо, що є повільно змінними у порівнянні з , то має місце нерівність .

Це дає змогу в лівій частині рівняння (1.17) знехтувати складовими, що містять другі похідні по , в результаті ліва частина (1.17) прийме вигляд

(1.18)

Таким же чином в правій частині рівняння (1.17) всі складові, що місять другі похідні , котрі з’являються в результаті дії оператора rotrot, можна одразу опустити. Крім того, оскільки в правій частині знаходиться множник , то можна опустити і всі складові з першими похідними , оскільки ці складові дають лише малу добавку (порядка ) до перших похідних в лівій частині.

Отже, залишається подіяти оператором rotrot лише на експоненціальні множники в правій частині (1.17), що дає наступний результат:

Згідно з (1.16) і . Введемо позначення , і оскільки сума векторів оберненої гратки є також є вектором оберненої гратки, заміняємо подвійну суму по h i h¢ подвійною сумою по h i h². Така заміна можлива завжди, оскільки сумування ведеться по всім векторам оберненої гратки. В результаті отримаємо:

(1.19)

Для зручності співставлення цього виразу з (1.18) зробимо наступні перепозначення: h®h¢ і h² ®h.

Прирівнюючи (1.18) і (1.19) відзначимо. що ці суми можуть бути рівні тільки тоді, коли рівні коефіцієнти при однакових експонентах, отримуємо наступну безмежну систему диференціальних рівнянь в частинних похідних першого порядку:

(1.20)

Подвійний векторний добуток у правій частині системи рівнянь (1.20) проектує вектор поляризації поля на напрямок, перпендикулярний хвильовому вектору .

Система рівнянь (1.20) описує розповсюдження в кристалі безмежного числа зв’язаних між собою дифракційних хвиль і загальне рівняння цієї системи є не менш складною задачею я і рішення вихідного рівняння (1.13).


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.008 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал