Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Имитационное моделирование. Метод Монте-Карло






 

В исследовании операций широко применяются как аналитические, так и статистические модели. Каждый из этих типов имеет свои преимущества и недостатки. Аналитические модели более грубы, учитывают меньшее число факторов, всегда требуют каких-то допущений и упрощений. Зато результаты расчета по ним легче обозримы, отчетливее отражают присущие явлению основные закономерности. А, главное, аналитические модели больше приспособлены для поиска оптимальных решений.

Статистические модели, по сравнению с аналитическими, более точны и подробны, не требуют столь грубых допущений, позволяют учесть большое (в теории – неограниченно большое) число факторов. Но и у них – свои недостатки: громоздкость, плохая обозримость, большой расход машинного времени, а главное, крайняя трудность поиска оптимальных решений, которые приходятся искать путем догадок и проб.

Наилучшие работы в области исследования операций основаны на совместном применении аналитических и статистических моделей. Аналитическая модель дает возможность в общих чертах разобраться в явлении, наметить как бы контур основных закономерностей. Любые уточнения могут быть получены с помощью статистических моделей.

Имитационное моделирование применяется к процессам, в ход которых может время от времени вмешиваться человеческая воля. Человек, руководящий операцией, может в зависимости от сложившейся обстановки, принимать те или другие решения, подобно тому, как шахматист, глядя на доску, выбирает свой очередной ход. Затем приводится в действие математическая модель, которая показывает, какое ожидается изменение обстановки в ответ на это решение и к каким последствиям оно приведет спустя некоторое время. Следующее «текущее решение» принимается уже с учетом реальной новой обстановки и т.д. В результате многократного повторения такой процедуры руководитель как бы «набирает опыт», учится на своих и чужих ошибках и постепенно выучивается принимать правильные решения – если не оптимальные, то почти оптимальные.

В современной литературе не существует единой точки зрения по вопросу о том, что понимать под имитационным моделированием. Так существуют различные трактовки:

- в первой – под имитационной моделью понимается математическая модель в классическом смысле;

- во второй – этот термин сохраняется лишь за теми моделями, в которых тем или иным способом разыгрываются (имитируются) случайные воздействия;

- в третьей – предполагают, что имитационная модель отличается от обычной математической более детальным описанием, но критерий, по которому можно сказать, когда кончается математическая модель и начинается имитационная, не вводится.

Датой рож­дения метода Монте-Карло принято считать 1949 г., когда появилась статья под названием «The Monte Carlo method». Создателями этого метода считают амери­канских математиков Дж. Неймана и С. Улама. В СССР первые статьи о методе Монте-Карло были опублико­ваны в 1955—1956гг.

Идея метода чрезвычайно проста и состоит она в следующем. Вместо того, чтобы описывать процесс с помощью аналитического аппарата (дифференциальных или алгебраических уравнений), производится «розыгрыш» случайного явления с помощью специально организованной процедуры, включающей в себя случайность и дающей случайный результат.

В действительности конкретное осуществление случайного процесса складывается каждый раз по-иному; так же и в результате статистического моделирования мы получаем каждый раз новую, отличную от других реализацию исследуемого процесса. Что она может нам дать? Сама по себе ничего, так же как, скажем, один случай излечения больного с помощью какого-либо лекарства. Другое дело, если таких реализаций получено много. Это множество реализаций можно использовать как некий искусственно полученный статистический материал, который может быть обработан обычными методами математической статистики. После такой обработки могут быть получены любые интересующие нас характеристики: вероятности событий, математические ожидания и дисперсии случайных величин и т. д. При моделировании случайных явлений методом Монте-Карло мы пользуемся самой случайностью как аппаратом исследования, заставляем ее «работать на нас».

Нередко такой прием оказывается проще, чем по­пытки построить аналитическую модель. Для сложных операций, в которых участвует большое число элемен­тов (машин, людей, организаций, подсобных средств), в которых случайные факторы сложно переплетены, где процесс — явно немарковский, метод статистиче­ского моделирования, как правило, оказывается проще аналитического (а нередко бывает и единственно воз­можным).

В сущности, методом Монте-Карло может быть ре­шена любая вероятностная задача, но оправданным он становится только тогда, когда процедура розыгрыша проще, а не сложнее аналитического расчета.

Метод Монте-Карло - это численный метод решения математических задач при помощи моделирования случайных величин.

Особенности метода Монте-Карло.

Первая особенность метода - простая структура вычислительного алгоритма.

Вторая осо­бенность метода - погрешность вычислений, как правило, пропорциональна D/N2, где D - неко­торая постоянная, N - число испытаний. Отсюда видно, что для того, чтобы уменьшить по­грешность в 10 раз (иначе говоря, чтобы получить в ответе еще один верный десятичный знак), нужно увеличить N (т. е. объем работы) в 100 раз.

Ясно, что добиться высокой точности таким путем невозможно. Поэтому обычно говорят, что метод Монте-Карло особенно эффективен при решении тех задач, в которых результат ну­жен с небольшой точностью (5-10%).

Широкие возможности компьютерного имитационного моделирования приводят к разработке все более сложных конструкций моделей. Это порождает дополнительные проблемы не только для программиста, но и для пользователя. Количественное определение параметров модели (например, эластичности цены и рекламы) сталкивается со все большими трудностями. Поэтому часто приходится обращаться за недостающей информацией к экспертам, что при масштабных моделях со многими параметрами существенно усиливает спекулятивную природу практических рекомендаций.

Теория хаоса указывает на то, что при динамических с обратной связью системах уравнений даже мельчайшие изменения в конфигурации параметров модели или исходных условий могут привести к совершенно другим рекомендациям.

Определенное облегчение в этой связи могут принести " нейрональные сети". Эти стимулируемые нейробиологическими процессами компьютерные алгоритмы не нуждаются в функциональных причинно-следственных связях. Сеть сама " ищет" по определенному " правилу изучения" приближенную взаимосвязь, которая наилучшим образом отражает представленные данные. Поэтому нейрональные сети могут применяться без теоретической подоплеки для прогнозирования, например, покупок как реакции на воздействие рекламы. В этом случае для " подравнивания" и " настраивания" сети требуется обширный материал данных, отражающих прошлую динамику. С другой стороны, сеть сама гибко приспосабливается и " обнаруживает" даже неизвестные взаимосвязи, которые хотя и осуществляются " механически", но могут способствовать прояснению причинно-следственных связей.

Вопросы для самопроверки:

1. В чем суть имитационного моделирования? Какова область применения таких задач в экономике?

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал