Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Обыкновенные и особые точки плоской кривой
Доказательство. Пусть для определённости . Т.к. точка А лежит на кривой, то . Из теоремы о существовании неявной функции следует, что существует прямоугольник, содержащий внутри себя точку А такой, что внутри этого прямоугольника уравнение можно представить в виде (т.е. можно однозначно разрешить относительно у). Т.o. этот прямоугольник вырезает из нашей кривой простой отрезок этой кривой. Отсюда следует, что точка А – обыкновенная. Замечание. Если у нас , но , то можно представить в виде — также простой отрезок кривой. Условие является достаточным признаком обыкновенной точки. Но не является необходимым. Например, рассмотрим кривую, заданную уравнением . Это парабола. Точка лежит на параболе. Она, очевидно, является обыкновенной, т.к. . Умножим обе части уравнения параболы на выражение . Уравнение примет вид: . Точка по-прежнему останется обыкновенной, но в этой точке уже .
|