Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Матричные уравнения
Уравнение, называется матричным, если в качестве неизвестного оно содержит матрицу. Простейшие матричные уравнения имеют вид
, (1.24)
, (1.25)
, (1.26)
где – известные матрицы, а – неизвестные матрицы соответствующих размеров. В общем случае уравнения (1.24)-(1.26) эквивалентны некоторым системам линейных алгебраических уравнений (СЛАУ), но в том частном случае, когда матрицы и обратимы, теория этих уравнений проста. Прежде чем изложить её отметим, что числовая матрица является решением уравнения (1.24), если при подстановке её в это уравнение вместо матрицы мы получаем верное матричное равенство (и аналогично для уравнений (1.25) и (1.26)). Предложение 1.8. Пусть матрицы и обратимы, тогда уравнения (1.24)-(1.26) разрешимы при любых правых частях соответственно, а их единственные решения определяются по формулам
, ()
, ()
, ()
◄ Так как уравнения (1.25) и (1.26) являются частными случаями уравнения (1.24) ( в первом случае и во втором случае), доказательство проведём лишь для уравнения (1.24). (Рассуждения в случае уравнений (1.25) и (1.26) предлагаем читателю провести самостоятельно.) Пусть , , тогда по необходимости матрицы и имеют размер . Так как , , то для любой матрицы из существует матрица вида (). Подставляя её в уравнение (1.24), получаем , т.е. матрица вида () является решением уравнения (1.24). Тем самым показано, что решение уравнения (1.24) существует. Осталось показать его единственность. В самом деле, пусть некоторое решение уравнения (1.24), тогда справедливо матричное равенство . Умножая обе части слева на матрицу , а справа на матрицу , получаем, что или . т.е. имеет вид (). ► Два матричных уравнения будем называть равносильными, если они имеют одинаковые решения. В частности, если у одного из равносильных уравнений решений нет, то их нет и у второго уравнения. В последнем случае мы предполагаем, что неизвестные матрицы, входящие в оба уравнения, имеют одинаковые размеры. Предложение 1.9. Пусть и . Тогда уравнения
, (1.27)
(1.28)
равносильны для любых матриц из . ◄ Действительно, если – решение уравнения (1.27), тогда . Умножая обе части этого равенства слева на матрицу , получаем, что. или , т.е. является решением уравнения (1.28). Наоборот, если – решение уравнения (1.28), тогда . Но матрица обратима. Умножая обе части последнего равенства слева на матрицу , получаем, что
, т.е. – решение уравнения (1.27). Если же у одного из уравнений (1.27) или (1.28) решений нет, тогда их нет и у второго уравнения, так как в противном случае, повторяя проведённые выше рассуждения, приходим к противоречию. ►
|