Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Формула полной вероятности. Определение 1. Говорят, что события Н1, Н2, , Нn образуют полную группу событий, если они попарно несовместны и достоверно появление хотя бы одного из них






Определение 1. Говорят, что события Н1, Н2, …, Нn образуют полную группу событий, если они попарно несовместны и достоверно появление хотя бы одного из них, другими словами, их объединение есть достоверное событие, то есть они удовлетворяют условиям

(1.33)

Определение 2. Полная группа попарно несовместных событий называется системой гипотез, а сами эти события – гипотезами. Итак, система гипотез - это разбиение на непересекающиеся множества.

Предположим теперь, что интересующее нас событие А может наступить при условии появления одного из несовместных событий Hi и известны вероятности этих событий р(Hi) и условные вероятностир(А| Hi). Как найти вероятность события А? Ответ на этот вопрос дает следующая теорема.

Теорема. Пусть для некоторого события А системы гипотез Н1, …, Нn известны P(H1), P(H2), …, P(Hn) и Р(А|H1), …, P(Hn). Тогда безусловная вероятность Р(А) события А выражается через его условные вероятности по формуле (1.34)


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал