Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Локальная теорема Лапласа. Асимптотическая
формула Муавра-Лапласа (Пьер Симон Лаплас, 1749-1827) (Абрахам де Муавр, 1667-1754) При больших значениях n, k, p (0< р< 1) пользоваться формулой Бернулли достаточно трудно, так как формула требует выполнения действий над громадными числами. Например, если n=50, k=30, p=0, 1, то для отыскания вероятности Р50(30) надо вычислить выражение Р50(30)= 50! /(30! 20!)∙ (0, 1)30∙ (0, 9)20, где 50! = 30 414 093∙ 1057, 30! = 26 525 286∙ 1025 , 20! = 24 329 020∙ 1011 . Оказывается можно упростить процесс вычисления интересующей нас вероятности. Если число испытаний n достаточно велико, вероятность появления события А ровно k раз в n испытаниях можно найти по теореме Лапласа и асимптотической формуле Муавра-Лапласа. Локальная теорема Лапласа. Если вероятность р появления события А в каждом испытании постоянна и отлична от нуля и единицы, то вероятность Р n(k) того, что событие А появится в n испытаниях ровно k раз, приближенно равна (тем точнее, чем больше n) значению функции (1.39) где - функция Гаусса. Значения функции φ (х) приводятся в специальных таблицах (например, Гмурман, приложение 1) для положительных значений х. Для отрицательных значений х можно пользоваться теми же таблицами, так как функция φ (х) нечетна, т.е. φ (-х)= -φ (х). Пример 1.67. Найти вероятность того, что событие А наступит ровно 80 раз в 400 испытаниях, если вероятность появления этого события в каждом испытании равна 0, 2. Решение. По условию n=400; k=80; p=0, 2; q=0, 8. по асимптотической формуле Муавра-Лапласа Вычислим определяемое данными задачи значение х: По таблице приложения 1 (Гмурман В.Е.) находим Искомая вероятность Р400(80)=(1/8)∙ 0, 3989=0, 04986. Формула Бернулли приводит примерно к такому же результату (выкладки ввиду их громоздкости упущены): Р400(80)=0, 0498. Домашнее задание: ДР-14 (№3.27, Зарубин, стр. 116)
|