Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Распределение Пуассона. Пусть производится n независимых испытаний, в каждом из которых вероятность появления события А равна р
Пусть производится n независимых испытаний, в каждом из которых вероятность появления события А равна р. Если число испытаний n велико, а вероятность события р мала (р≤ 0, 1), для вычисления вероятности появления события А ровно k раз пользуются асимптотической формулой Пуассона. Поставим задачу следующим образом: найти закон распределения случайной величины X – числа появления события А в n испытаниях. Для ее решения требуется определить возможные значения X и их вероятности. Очевидно, событие А в п испытаниях может либо не появиться, либо появиться 1 раз, либо 2 раза,..., либо n раз. То есть, случайная величина X может принимать следующие значения: х1=0, х2=1, х3=2, …, хn+1 = п. Для определения вероятности того, что в n опытах случайная величина Х примет значение х=m, можно воспользоваться формулой Бернулли:
После преобразований при np=λ =const (см. раздел 1.12.5) получим (3.3) Пример 3.2. Завод отправил на базу 5000 доброкачественных изделий. Вероятность того, что в пути изделие повредится, равно 0, 0002. Найти вероятность того, что на базу прибудут 3 негодных изделия. Решение. Поставленную задачу можно сформулировать в следующем виде: найти вероятность того, что случайная величина Х – число поврежденных в пути изделий равно 3. Воспользуемся асимптотической формулой Пуассона. По условию n =5000, p =0, 0002, k =3. Найдем λ =np=5000∙ 0, 0002=1. По формуле Пуассона искомая вероятность приближенно равна
|