Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Стандартное нормальное распределение
Величину Х≈ N(0, 1) с нулевым средним и единичным среднеквадратическим отклонением называют стандартной нормальной. Ее плотность вероятности и функция распределения задаются формулами:
Определённый интеграл функции распределения не выражается через известные элементарные функции. Но данный интеграл в некоторых пределах может быть теми или иными приёмами вычислен с достаточной точностью точности. Определённый интеграл с переменным верхним пределом вида
В силу симметрии функции f(х) относительно оси ординат достаточно задавать значения F(x) и Ф(х) только для положительных значений х. Легко видеть, что все три функции связаны простыми соотношениями, позволяющими по любой из них вычислить значения двух других Пример 3.5. Затаривание мешков с сахаром производится без систематических ошибок. Случайные ошибки подчинены нормальному закону со среднеквадратическим отклонением σ = 200 г. Найти вероятность того, что затаривание будет проведено с ошибкой, не превосходящей по абсолютной величине 100 г. Решение. В задаче рассматривается случайная величина – ошибка взвешивания, то есть разность между (ξ – а) – между случайным значением веса мешка сахара и его нормативным значением а – математическим ожиданием. Требуется найти:
|