Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Случайной величины






Законом распределения вероятностей двумерной дискретной случайной величины называют перечень возможных значений этой величины, т.е пар чисел (xi, yj) и их вероятностей p(xi, yj) . Обычно закон распределения задают в виде таблицы с двойным входом (табл. 4.1).

Первая строка таблицы содержит все возможные значения составляющей Х, а первый столбец - все возможные значения составляющей У. в клетке, стоящей на пересечении «столбца xi» и «строки yj», указана вероятность p(xi, yj) того, что двумерная случайная величина примет значение (xi, yj).

Так как события (Х= xi, У= yj) образуют полную группу, то сумма вероятностей, помещённых во всех клетках таблицы, равна единице.

Таблица 4.1

Значения у Значения х
х1 х2 xi xn
y1 p(x1, y1) p(x2, y1) p(xi, y1) p(xn, y1)
y2 p(x1, y2) p(x2, y2) p(xi, y2) p(xn, y2)
yj p(x1, yi) p(x2, yi) p(xi, yj) p(xn, yj)
       
ym p(x1, ym) p(x2, ym) p(xi, ym) p(xn, ym)

Зная закон распределения двумерной дискретной случайной величины, можно найти законы распределения каждой из её составляющих. Действительно, например, события (Х=х1; У=у1), (Х=х1; У=у2), …, (Х=х1; У=уm) несовместны, поэтому вероятность Р(x1) того, что Х примет значение х1, по теореме сложения такова: Р(x1) = p(x1, y1)+ p(x1, y2)+ … + p(x1, ym).

Таким образом, вероятность того, что Х примет значение х1, равна сумме вероятностей «столбца x1». В общем случае, для того, чтобы найти вероятность Р(Х= xi), надо просуммировать вероятности столбца xi. Аналогично, сложив вероятности «строки yj», получим вероятность Р(У= уj).

Пример 4.2. Найти законы распределения составляющих двумерной случайной величины, заданной законом распределения (табл. 4.2.1).

Значе- ния y Значения х
х1 х2 х3
у1 0, 10 0, 30 0, 20
у2 0, 06 0, 18 0, 16

 

Решение. Сложив данные по столбцам, получим вероятности возможных значений Х, а именно: Р(х1)=0, 16; Р(х2)=0, 48; Р(х3)=0, 36. Закон распределения составляющей Х двумерной случайной величины имеет вид Х х1 х2 х3 Проверка:

Р 0, 16 0, 48 0, 36 0, 16+0, 48+0, 36=1.

Сложив вероятности по строкам, получим вероятности возможных значений У, а именно: Р(у1)=0, 60; Р(у2)=0, 40. Закон распределения составляющей У будет иметь вид:

У у1 у2

Р 0, 60 0, 40 Проверка: 0, 60+0, 40= 1.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.017 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал