Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Основы работы в системе mathcad. Построение графиковСтр 1 из 10Следующая ⇒
ВВЕДЕНИЕ Практически во всех науках о природе, живой и неживой, об обществе построение и использование моделей является мощным орудием познания. Реальные объекты и процессы бывают столь многогранны и сложны, что лучшим способом их изучения часто является построение модели, отображающей лишь какую-то грань реальности и потому многократно более простой, чем эта реальность, и исследование этой модели. Модель является представлением объекта в некоторой форме, отличной от формы его реального существования. Математическая модель выражает существенные черты объекта или процесса языком уравнений и других математических средств. Возможности аналитических методов решения сложных математических задач очень ограничены, и, как правило, эти методы гораздо сложнее численных. Поэтому в данном практикуме приведены численные методы, реализуемые на компьютерах. Однако компьютеры при математическом моделировании используются не только для численных расчетов, но и для аналитических преобразований. Результат аналитического исследования математической модели часто бывает выражен столь сложной формулой, что при взгляде на нее невозможно представить описываемый процесс. Эту формулу нужно представить графически, проиллюстрировать в динамике. К программам, позволяющим выполнять такие задачи, относится система MathCad, которая представляет собой автоматизированную систему, позволяющую динамически обрабатывать данные в числовом и аналитическом (формульном) виде. Программа MathCad сочетает в себе возможности проведения расчетов и подготовки форматированных научных и технических документов. Данный лабораторный практикум содержит теоретический материал о принципах работы в программе MathCad, краткие сведения из вычислительной математики, а также задания к лабораторным работам. Целью выполнения заданий является получение и закрепление навыков решения прикладных задач с использованием программы MathCad. Лабораторная работа №1 ОСНОВЫ РАБОТЫ В СИСТЕМЕ MathCAD. ПОстроение графиков Научно-технические документы содержат формулы, результаты расчетов в виде таблиц данных или графиков, текстовые комментарии или описания, другие иллюстрации. В программе MathCad им соответствуют два вида объектов: формулы и текстовые блоки. Формулы вычисляются с использованием числовых констант, переменных, функций (стандартных и определенных пользователем), а также общепринятых обозначений математических операций. Графики, которые автоматически строятся на основе результатов расчетов, также рассматриваются как формулы. Комментарии, описания и иллюстрации размещаются в текстовых блоках, которые игнорируются при проведении расчетов. Чтобы буквенные обозначения можно было использовать при расчетах по формулам, этим обозначениям должны быть сопоставлены числовые значения. В программе MathCad буквенные обозначения рассматриваются как переменные, и их значения задаются при помощи оператора присваивания «: =». Таким же образом можно задать числовые последовательности, аналитически определенные функции, матрицы и векторы. Если все значения переменных известны, то для вычисления числового значения выражения (скалярного, векторного или матричного) надо подставить все числовые значения и произвести все заданные действия. В программе MathCad для этого применяют оператор вычисления (вводится символом «=»). Важно следить за тем, чтобы все переменные и функции были определены левее и/или выше тех выражений, где они используются. Удобно задать значения известных параметров, провести вычисления с использованием аналитических формул, результат присвоить некоторой переменной, а затем использовать оператор вычисления для вывода значения этой переменной. Например:
При изменении какой-либо формулы программа MathCad автоматически производит необходимые вычисления, обновляя изменившиеся значения и графики. Уравнения и системы уравнений, возникающие в практических задачах, обычно можно решить только численно. Методы численного решения реализованы в программе MathCad. Блок уравнений и неравенств, требующих решения, записывается после ключевого слова given (дано). При записи уравнений используется знак логического равенства (комбинация клавиш CTRL+=). Значения переменных, удовлетворяющие системе уравнений и неравенств, находятся с помощью стандартной функции find. Например: При аналитических вычислениях результат получают в нечисловой форме в результате тождественных преобразований выражений. Для такого рода вычислений в программе MathCad используют оператор аналитического вычисления «®»(клавиатурная комбинация CTRL+., а также команды меню Symbolic (Символьный)). Переменные при аналитических вычислениях рассматриваются как неопределенные параметры. Результат можно использовать для анализа решения при различных значениях этих переменных. При аналитическом решении уравнений и систем за одну операцию можно найти все существующие решения.
Например: В программе MathCad для вычисления производной, а также неопределенных и определенных интегралов могут использоваться символические вычисления с помощью меню Symbolic > Variable (Символьный > Переменная). Например: Если функция не задана аналитическиили не позволяет получить первообразную в виде формулы, имеется возможность численного дифференцирования и численного расчета определенных интегралов. Численные методы используют и для решения дифференциальных уравнений. С помощью программы MathCad можно решать уравнения и системы уравнений первого порядка с заданными начальными условиями. Уравнение более высокого порядка надо сначала преобразовать в систему уравнений первого порядка.
|