Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Теоретические сведения. Для произвольно заданных узлов интерполирования пользуются формулой, обычно называемой интерполяционной формулой Лагранжа.






Для произвольно заданных узлов интерполирования пользуются формулой, обычно называемой интерполяционной формулой Лагранжа.

Пусть на отрезке [a, b] заданы точки xk, k=0, 1, …, n (узлы интерполирования), в которых известны значения функции f(x). Задача интерполирования алгебраическими многочленами состоит в том, чтобы построить многочлен степени n

, (6.1)

значения которого в заданных точках совпадают со значениями функции f(x) в этих точках:

(6.2)

Для любой непрерывной функции f(x) сформулированная задача имеет единственное решение. Действительно, для отыскания коэффициентов a0, a1, …, anполучаем систему линейных уравнений

,

определитель которой (определитель Вандермонда) отличен от нуля, если среди точек xi, i=0, 1, …, nнет совпадающих. Решение системы можно записать различным образом.

Интерполяционный многочлен, представленный в виде

(6.3)

называется интерполяционным многочленом Лaгранжа (Жозеф Луи Лагранж — французский математик). Функции wi есть многочлены степени n, которые называются лагранжевыми коэффициентами:

(6.4)

Рассмотрим два частных случая интерполяционного полинома Лагранжа.

1. При имеем две узловые точки. Формула Лагранжа представляет в этом случае уравнение прямой , проходящей через две заданные точки:

,

где — абсциссы этих точек.

2. При получим уравнение параболы , проходящей через три точки:

,

где — абсциссы данных точек.

 

Отметим преимущества и недостатки многочлена Лагранжа.

Преимущества: интерполяционный многочлен Лагранжа работает как для таблиц с постоянным шагом, так и для таблиц с переменным шагом; рni(x) не зависит от функции f(x), откуда следует, что по одной системе узлов можно интерполировать несколько функций.

Недостатки: все слагаемые в формуле Лагранжа равнозначны, поэтому при добавление узлов таблицы многочлен Лагранжа придется полностью перестраивать.

Погрешность интерполяционной формулы Лагранжа удовлетворяет неравенству

,

где , , .

Величину ошибки можно минимизировать, если в качестве узлов интерполяции выбрать абциссы (узпы) полинома Чебышева. Многочлен Чебышева Tn(x) на интервале [-1, 1] имеет ровно n действительных корней, определяемых как . Для того чтобы решить задачу интерполяции на интервале [a, b], необходимо выполнить линейное преобразование .


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал