Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Погрешности арифметических действий






 

1. Пусть u = x + y + z + … + t. Тогда

.

Следовательно, предельная абсолютная погрешность суммы равна сумме предельных абсолютных погрешностей слагаемых.

При установлении предельной относительной погрешности суммы надо различать два случая:

a) все слагаемые имеют одинаковые знаки. В первом случае, считая для простоты все слагаемые положительными, имеем:

,

т.е., относительная погрешность суммы слагаемых одного знака заключена между наименьшей и наибольшей относительными погрешностями слагаемых.

б) слагаемые имеют разные знаки. Пусть x > 0, y > 0 и u = x - y. Тогда (сохраняя прежние обозначения) будем иметь:

.

 

2. Положим u = xyz .

Формула позволяет определить предельную абсолютную погрешность

.

Отсюда

,

 

т.е., предельная относительная погрешность произведения равна сумме предельных относительных погрешностей сомножителей.

3. Положим, наконец, , . Формула (2.1) позволяет определить предельную абсолютную погрешность.

Отсюда

,

т.е., предельная относительная погрешность частного равна сумме предельных относительных погрешностей делимого и делителя.

Итак, для оценки погрешности мы получили следующие правила:

1) При сложении и вычитании абсолютные погрешности складываются.

2) При умножении и делении относительные погрешности складываются; при возведении в степень относительные погрешности умножаются на абсолютную величину показателя степени.

3) При отыскании значения функции абсолютная погрешность функции равна произведению абсолютной погрешности аргумента на абсолютную величину производной.

 

Требования, предъявляемые к вычислительному алгоритму

1. Требование точности.

2. Требование реализуемости.

3. Требование экономичности.

4. Требования отсутствия аварийной остановки ЭВМ в процессе вычислений.

 

Результаты вычислительного эксперимента:

Машинная бесконечность .

Машинный нуль .

Машинное эпсилон .

 

Сложение чисел различной абсолютной точности

1) выделить числа, десятичная запись которых обрывается ранее других, и оставить их без изменения;

2) остальные числа округлить по образцу выделенных, сохраняя один или два запасных десятичных знака;

3) произвести сложение данных чисел, учитывая все сохраненные знаки;

4) полученный результат округлить на один знак.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал