Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Решение систем нелинейных уравнений
В отличие от систем линейных уравнений для систем нелинейных уравнение не известны прямые методы решения. Лишь в отдельных случаях систему можно решить непосредственно. Например, для системы из двух уравнений иногда удается выразить одно неизвестное через другое и таким образом свести задачу к решению одного нелинейного уравнения относительно одного неизвестного. Поэтому итерационные методы для нелинейных систем приобретаю особую актуальность. Метод Ньютона Рассмотрим нелинейную систему уравнений (4.10) или в векторной форме f(x)=0 (4.10’) где , . Для решения системы (4.10’) будем пользоваться методом последовательных приближений. Предположим, известно k-е приближение точный корень уравнения (4.10’) можно представить в виде , (4.11) где - поправка (погрешность корня). . (4.12) Предполагая, что функция f(x) непрерывно дифференцируема в некоторой выпуклой области, содержащей x и x(k), разложим левую часть уравнения (4.12) по степеням малого вектора , ограничиваясь линейными членами, (4.13) Метод Ньютона решения системы (4.10) состоит в построении итерационной последовательности: k=0, 1, 2, … (4.15) Если все поправки становятся достаточно малыми, счет прекращается. Иначе новые значения xi используются как приближенные значения корней, и процесс повторяется до тех пор, пока не будет найдено решение или не станет ясно, что получить его не удается.
|