Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Локальная интерполяция






Линейная интерполяция

Простейшим и часто используемым видом локальной интерполяции является линейная интерполяция. Она состоит в том, что заданные точки (i=0, 1, …, n) соединяются прямолинейными отрезками, и функция f(x) приближается к ломаной с вершинами в данных точках.

 

Рис. 7.1. Линейная интерполяция

Уравнения каждого отрезка ломаной линии в общем случае разные. Поскольку имеется n интервалов (xi, xi+1), то для каждого из них в качестве уравнения интерполяционного полинома используется уравнение прямой, проходящей через две точки. В частности, для i-го интервала можно написать уравнение прямой, проходящей через точки (xi, yi), и (xi+1, yi+1), в виде:

.

Отсюда

, (7.9)

,

Следовательно, при использовании линейной интерполяции сначала нужно определить интервал, в который попадает значение аргумента х, а затем подставить его в формулу (7.9) и найти приближенное значение функций в этой точке.

 

Квадратичная интерполяция

В случае квадратичной интерполяции интерполяционной функции на отрезке принимается квадратный трехчлен.

Уравнение квадратного трехчлена

, (7.10)

содержит три неизвестных коэффициента для определения которых необходимы три уравнения.

Ими служат условия прохождения параболы (7.10) через три точки , , . Эти условия можно записать в виде:

(7.11)

 

Интерполяция для любой точки проводится по трем ближайшим точкам.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал