Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Эрмитовы сплайны
Эрмитовы сплайны применяют в случае, когда в узловых точках кроме значений функции заданы также и значения ее производных. Если число узлов велико, то применение многочленов Эрмита (см. п. 2.12) приводит к тому, что степень многочлена будет высокой. Применение, в случае кратных узлов, обычных сплайнов может не обеспечить согласование производных сплайна в узлах с заданными производными функции. Рассмотрим задачу построения кубического эрмитового сплайна. В узловых точках
На интервале
где
Тогда, учитывая что
Подставив выражения
Решение системы (2.90) имеет вид
Таким образом, параметры эрмитова сплайна 3-го порядка вычисляются по формулам (2.123), (2.125), (2.128) и (2.129). Так как многочлен Пример 2.11. Пусть исходные данные приведены в таблице: Таблица 2.11.
Выполнив расчеты параметров эрмитова сплайна по формулам (2.123), (2.125), (2.128) и (2.129) получим результаты, приведенные в следующей таблице: Таблица 2.12.
На рис. 2.6 приведены график эрмитова сплайна, а также для сравнения график исходной функции f (x).
Рис. 2.7. Интерполяция эрмитовым сплайном
Эрмитовы сплайны отличаются простотой вычислений и дают неплохие результаты аппроксимации. Если имеется необходимость, можно строить эрмитовы сплайны и других порядков, например, 2-го, 4-го и др.
|