Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






I. Мера множества (площадь, объем).






ГЕОМЕТРИЧЕСКИЕ И МЕХАНИЧЕСКИЕ ПРИЛОЖЕНИЯ КРАТНЫХ ИНТЕГРАЛОВ.

I. Мера множества (площадь, объем).

Пусть , - измеримое (доказательство смотри раньше, приняв ):

при n=2 ;

при n=3 .

Для определенного интеграла:

а) Пусть - каноническая область I-го типа (смотри ранее).

 

 

.

Аналогично для - каноническая область II-го типа:

.

б) Пусть - криволинейный сектор .

Тогда:

.

Если область охватывает начало координат:

.

 

б’) Объем цилиндрического тела.

 

 

 

и однозначна.

в) Если и имеет непрерывные частные производные в области , то :

1) , где

- проекция на плоскость XOY.

2) :

, - проекция на плоскость XOZ.

3) :

, - проекция на плоскость YOZ.

 

4) Случай неявного задания поверхности: .

Площадь , заданной уравнением выражается интегралом:

5) Случай параметрического задания поверхности.

Если уравнение поверхности задано параметрически:

, где , - ограниченная область, в которой функции непрерывно-дифференцируемы, то:

где и

.

ЗАМЕЧАНИЕ.

Площадь поверхности в полярных координатах:

.

6) Пусть - тело с заданной площадью поперечного сечения.

 

 

.

7) Пусть - тело, полученное вращением криволинейной трапеции вокруг оси OX.

 

 

 

 

 

.

Из 6 следует, что .

8) Объем - цилиндроида (см. ранее).

.

 

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.011 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал