Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Заряд конденсатора.






Переведем ключ К на схеме (рис. 1) из положения 2 в положение 1. В результате начнется заряд конденсатора от батареи, имеющей ЭДС e, через сопротивление R.

Уравнения, описывающие заряд конденсатора, аналогичны выражениям (1)

 

, e–U, q=CU. (7)

Предполагаем, что внутреннее сопротивление источника тока пренебрежимо мало по сравнению с величиной R. Теперь ток в цепи считается положительным, когда он течет в направлении положительно заряженной обкладки конденсатора. Исключая в уравнениях (7) силу тока i и напряжение на конденсаторе U, получим уравнение:

 

.(8)

Запишем уравнение (8) в следующем виде:

 

.(9)

Решая это уравнение, получим

 

.(10)

Коэффициент А най-дем из начальных условий, а именно, q =0 при t =0:

A=–Ce.

 

 

Рис. 3

 

В результате получаем зависимость q (t):

 

.(11)

Поделив обе части уравнения (11) на С, получим зависимость напряжения на конденсаторе U от времени

 

.(12)

Зависимость U (t) показана на рис. 3. Подставив в (12) значение напряжения, равного , получим

, (13)

где q – время, за которое напряжение на конденсаторе вырастает до половины своего максимального значения (рис. 4). Отсюда время

q=t× ln2 » 0, 7 t.

Следовательно, длительность заряда до по-ловины максимального значения напряжения на конденсаторе будет та-кой же, как и при разряде конденсатора (см. (6)).

Рис. 4


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал