Главная страница
Случайная страница
КАТЕГОРИИ:
АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника
|
Спецификация требований к фильтрам.
Очевидно, что БИХ-фильтры экономнее, чем КИХ-фильтры, как с точки зрения необходимых вычислений, так и с точки зрения требований к памяти. Впрочем, можно еще дополнительно учесть симметрию коэффициентов КИХ-фильтров и считать более эффективными КИХ-фильтры (правда, только с точки зрения очевидной простоты реализации).
Еще один момент, который стоит отметить в связи с полученными результатами: при одинаковых спецификациях амплитудной характеристики число коэффициентов КИХ-фильтра обычно в шесть раз превышает порядок (наивысшая степень z в знаменателе) передаточной функции БИХ-фильтра.
1.Спецификация требований включает спецификации 1) Характеристик сигналов 2) Характеристик фильтра (АЧХ, ФЧХ, скорость работы и режимы фильтрации); 3) Принципа реализации (на базе ПК или в МК 4) Других требований к структуре (например, стоимость фильтра). Разработчик может не иметь достаточно информации, чтобы полностью определить фильтр на начальных этапах, но для упрощения процесса разработки следует сформулировать максимальное количество требований. Хотя перечисленные выше требования уточняются в зависимости от конкретной задачи, некоторым аспектам п. 2 стоит уделить особое внимание. Характеристики цифровых фильтров часто задаются в частотной области. Для частотно-избирательных фильтров, таких как фильтры нижних частот и полосовые фильтры, спецификации часто формулируются в виде схем допусков. Пример подобной схемы для фильтра нижних частот приведен на рис. 2. Заштрихованные горизонтальные линии обозначают пределы допустимых отклонений. В полосе пропускания амплитудная характеристика имеет пиковое отклонение δ Р, а в полосе подавления — максимальное отклонение δ S. Ширина полосы перехода определяет, насколько резким является характеристика фильтра. В этой области амплитудная характеристика монотонно уменьшается от полосы пропускания до полосы подавления.
Рис. 1 Схема допусков для фильтра нижних частот (ФНЧ)
Интерес представляют следующие ключевые параметры: δ P — отклонение в полосе пропускания; δ S — отклонение в полосе подавления; fр — граничная частота полосы пропускания; fS — граничная частота полосы подавления. Отклонения в полосе пропускания и полосе подавления могут выражаться как обычные числа или в децибелах, когда они выражают неравномерность в полосе пропускания и затухание в полосе подавления соответственно. Следовательно, минимальное затухание в полосе подавления АS и максимальная неравномерность в полосе пропускания АP в децибелах записываются следующим образом (для КИХ-фильтров): АS (затухание в полосе подавления) = -20lgδ S, Ар (неравномерность в полосе пропускания) = 20lg(l + δ P). При спецификации фазовой характеристики цифровых фильтров во многих случаях достаточно указать, что фазовое искажение существенно или что желательна линейная фазовая характеристика. В то же время, в некоторых приложениях, где фильтры используются для выравнивания или компенсации фазовой характеристики системы или как фазовращатели, фазовую характеристику задавать следует.
|