Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Задания контрольной работы № 1






 

В задачах 1-10 найти и изобразить область существования функции:

 

1.

2.

3.

4. z = ln(– x – y) + 8x – y.

5.

6.

7.

8. z = arcos(x – y) + xy.

9. z = 2 – ln(y – x).

10. z = 5arcsin(yÖ x) + x2 – x.

 

В задачах 11-20 даны функция u = f(x, y, z), точка А и вектор . Требуется найти gradu в точке А и производную в точке А по направлению вектора .

 

11. u = x3y2z; A(1; 2; 3);

12. A(2; 1; 1);

13. u = xy + z ln(z/y); A(3; -1; -1);

14. A(1; -1; 1);

15. u = ln(3x + 2y2 + z3); A(-1; 2; 1);

16. u = 2x – y – z + ex-2y-z; A(3; 1; 1);

17. u = xy2 – 2z2 + 3cos(3x + y – 2z); A(1; 1; 2);

18. u = 2tg(z3 – 2y2 – 3x); A(2; -1; 2);

 

19. ; A(-1; 1; -1);

20. u = 3xyz – 2sin(x – 2y + 5z); A(-1; 2; 1);

 

В задачах 21-30 найти уравнения касательной плоскости и нормали к поверхности:

 

21. х2 + 2у2 + 3z2 = 6 в точке (1; -1; 1).

22. 4z = х2 + у2 в точке (2; 2; 2).

23. x + 2y – lnz + 4 = 0 в точке (2; -3; 1).

24. 4х2 + 4у2 + z2 = 4 в точке (12/13; -3/13; 8/13).

25. z = x + ln(y/z) в точке (1; 1; 1).

26. 3x/z + 3y/z = 12 в точке (2; 1; 1).

27. х2 – z(2y – 3) = 0 в точке (3; 6; 1).

28. z = в точке (1; 1; 7).

29. z = в точке (1; 1; 5/2).

30. хey + уez + zex = 3e в точке (1; 1; 1).

 

В задачах 31-40 исследовать функцию на экстремум.

 

31.

32.

33.

34.

35. z = 2lnx + 3ln(y/6) + ln(12 – x – y) – 3.

36.

37.

38.

39.

40.

 

В задачах 41-50 дан двойной интеграл по области (D), ограниченной заданными линиями. Требуется:

а) построить область (D);

б) перейти к одному двукратному и расставить пределы интегрирования по области (D);

в) перейти к двум двукратным и расставить пределы интегрирования по области (D);

г) вычислить массу пластинки, занимающей область (D), при заданной поверхностной плотности f(x, y).

 

41. 3х – 7у + 2 = 0; 3х – 8у + 1 = 0; у = 2; f(x, y) = x + 3.

42. 3x + 4y – 11 = 0; 3x + 2y – 7 = 0; x =–3; f(x, y) = y – 2.

43. 4х – 3у – 7 = 0; 2х – 3у + 1 = 0; у =–1; f(x, y) = x + 2.

44. х – 5у + 7 = 0; 4х – 5у + 13 = 0; x = 3; f(x, y) = y – 1.

45. 3х + 2у + 5 = 0; 3х + 4у + 1 = 0; у =–4; f(x, y) = x + 3.

46. 2х – 3у + 5 = 0; 8х – 3у – 7 = 0; x =–1; f(x, y) = y + 1.

47. 4х + 3у – 10 = 0; 4х + 7у –2 = 0; у = 2; f(x, y) = x + 3.

48. 6х + 5у – 13 = 0; 3х + 5у – 19 = 0; x = 3; f(x, y) = y + 1.

49. 2х – у – 3 = 0; 4х + 3у – 11 = 0; у = 5; f(x, y) = x+1.

50. х + 5у + 7 = 0; х – у + 1 = 0; x = 3; f(x, y) = y + 2.

 

В задачах 51-60 перейти к полярным координатам и вычислить интегралы:

 

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

 

В задачах 61-70 определить массу дуги кривой, если линейная плотность в каждой точке дуги равна r(х, у).

 

61. ; от точки О(0; 0) до точки А(2; 2); r(х, у) = ху.

62. y = lnx; от точки А(1; 0) до точки В(2; ln2); r(х, у) = х2.

63. Полуокружность: х2 + у2 = 1, у ³ 0; r(х, у) = у.

64. ; от точки А(1; 1) до точки В(2; 1/2); r(х, у) = х32.

65. у = cosx; от точки А(0; 1) до точки В(π /2; 0); r(х, у) = уsinx.

66. y = ex; от точки А(0; 1) до точки В(1; е); r(х, у) = у2.

67. ; от точки О(0; 0) до точки А(1; ); r(х, у) = хеу – х2.

68. у = ; от точки А(1; 1) до точки В(4; 2); r(х, у) = 2у.

69. ; от точки А(0; 1) до точки В(Ö 3; 2); r(х, у) = ху.

70. от точки О(0; 0) до точки А(π /2; 0); r(х, у)= 2у.

 

В задачах 71-80 найти работу силового поля вдоль дуги плоской кривой L, заключенной между точками А и В.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.011 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал