![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Задачі, що приводять до поняття визначеного інтеграла.
Розділ II. Визначений інтеграл та його застосування.
Задачі, що приводять до поняття визначеного інтеграла. У багатьох сферах людської діяльності з давнини виникала необхідність обчислювати метричні характеристики різних геометричних фігур, як то довжини дуг ліній, площі фігур, об’єми тіл тощо. Такі задачі легко розв’язувалися для простих геометричних фігур, таких як квадрати, трикутники, паралелограми, трапеції. Площу многокутника можна було обчислити розбиттям його на трикутники і знаходженням суми площ цих трикутників. Всі ці фігури утворювались за допомогою відрізків прямих ліній. Але задача набагато ускладнюється, якщо мова йдеться про обчислення площ криволінійних фігур, наприклад площі круга. Давні єгиптяни наближено обчислювали цю площу за допомогою формули:
Рис. 1.
Значний внесок у розв’язання проблеми про площу круга зробив видатний грецький математик IV ст. до н.е. Євдокс Книдський. Він вписував в круг правильний многокутник, а потім доводив, що за рахунок збільшення кількості сторін многокутника (відповідно зменшенням їх довжин) можна добитися того, щоб його площа як завгодно мало відрізнялась від шуканої площі круга (рис. 8.1). Цей метод отримав назву метода вичерпання. В цьому доведенні нібито вичерпується простір між многокутником та колом, яке обмежує круг. По суті справи Євдокс підійшов до поняття границі – основи всієї вищої математики. Дуже важливий крок далі зробив славнозвісний Архімед (287–212 рр. до н.е.). Він знайшов загальні методи відшукання площ криволінійних фігур і застосував їх до обчислення кругових, параболічних та багатьох інших фігур. Основа всіх цих методів полягала все у тому ж – а саме шукана площа криволінійної фігури знаходилась як границя площ вписаних в неї прямолінійних фігур. Потім з’ясувалось, що аналогічний підхід можна застосувати не тільки для розв’язання геометричних задач, а й задач з області механіки, фізики тощо. Свій подальший розвиток ця теорія отримала у працях Й.Кеплера (1598–1647), П.Ферма (1601–1665), Дж.Валліса (1616–1703), Б.Паскаля (1623–1662) та деяких інших вчених. Цікаво, що Кеплер зіткнувся з цими проблемами, коли йому треба було обчислювати об’єми бочок для вина. Не треба тем не менш звідси робити висновок, що алкоголь сприяє розвитку науки. Спільним для всіх цих робіт було те, що шукана величина наближено замінювалась сумою великого числа малих величин, кожна з яких обчислювалась легко. Це було поступове створення інтегрального зчислення, яке набуло свого основного завершення у працях І.Ньютона (1643–1727) і Г.Лейбніца (1646–1716). Перейдемо тепер до точних математичних формулювань. 1. Задача про площу криволінійної трапеції. Нехай на відрізку Рис. 2.
Розіб’ємо відрізок на Рис. 3.
З рис. 3 ми бачимо, що шукана площа наближено дорівнює сумі площ всіх отриманих прямокутників. Знайдемо цю суму. Очевидно, вона дорівнює:
1. Задача про роботу змінної сили. Нехай вздовж осі Відомо, що якщо сила стала (
Але сила змінна, і ми не маємо права користуватися цією формулою. Тому розіб’ємо відрізок
Ця наближена рівність тим точніша, чим менші довжини
Звернемо увагу на те, що ми отримали формулу, яка повністю аналогічна формулі (1.1). Таким чином дві задачі з різних галузей науки привели до однієї математичної формули. Таку особливість математики ми вже відмічали вище.
|