Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Теоремы о предельном переходе в неравенствах.






 

Теорема 1. Теорема о «двух милиционерах».

Пусть заданы 3 функции f(x), j(x), g(x) такие, что f(x)£ j(x)£ g(x). Тогда если

 

 

Док-во: Вычтем А из всех частей неравенства f(x)£ j(x)£ g(x):

f(x)-A£ j(x)-A£ g(x)-A.

По теореме о представлении функции, имеющей предел: f(x)=A+a(x), g(x)=A+b(x), где a(x) и b(x) являются б/м. Между двумя б/м может находиться только б/м Þ по теореме о представлении функции, имеющей предел: .

Ч.т.д.

Теорема 2: Пусть функция f(x)³ 0 и существует конечный предел . Тогда A³ 0.

Док-во: Предположим противное: A< 0. Тогда окрестность точки A лежит по оси ОY ниже начала координат. Þ В этой окрестности f(x)< 0, чего быть не может.

Ч.т.д.

Теорема 3: Если f(x)³ g(x) и

 

 

Док-во: Из неравенства f(x)³ g(x) Þ f(x)-g(x)³ 0. По предыдущей теореме и арифметическим операциям Þ A³ B.

Ч.т.д.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал