Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Одномерный случай
Одномерный определённый интеграл как площадь криволинейной трапеции под графиком Основная идея большинства методов численного интегрирования состоит в замене подынтегральной функции на более простую, интеграл от которой легко вычисляется аналитически. При этом для оценки значения интеграла получаются формулы вида
где Частным случаем является метод построения интегральных квадратурных формул для равномерных сеток, известный как формулы Котеса. Метод назван в честь Роджера Котса. Основной идеей метода является замена подынтегральной функции каким-либо интерполяционным многочленом. После взятия интеграла можно написать
где числа Частными случаями формул Котеса являются: формулы прямоугольников (n=0), формулы трапеций (n=1), формула Симпсона (n=2), формула Ньютона (n=3) и т. д.
|