Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Поверхности второго порядка.






Если линейное уравнение в трехмерном декартовом базисе однозначно определяет плоскость, любое нелинейное уравнение, содержащее х, у, z описывает какую – то иную поверхность. Если уравнение имеет вид

Ах2 + Ву2 + Cz2 + 2Dxy + 2Exz + 2Fyz + 2Gx + 2Hy + 2Kz + L = 0, то оно описывает поверхность второго порядка (общее уравнение поверхности второго порядка). Выбором или преобразованием декартовых координат уравнение можно максимально упростить, приведя к одной из следующих форм, описывающих соответствующую поверхность.

1. Канонические уравнения цилиндров второго порядка, образующие которых параллельны оси Oz, а направляющими служат соответствующие кривые второго порядка, лежащие в плоскости хОу:

(2.43), (2.44), у2 = 2рх (2.45)

эллиптический, гиперболический и параболический цилиндры соответственно.

(Напомним, что цилиндрической называют поверхность, полученную перемещением прямой, называемой образующей, параллельно самой себе. Линию пересечения этой поверхности с плоскостью, перпендикулярной образующей, называют направляющей – она определяет форму поверхности).

По аналогии можно записать уравнения таких же цилиндрических поверхностей с образующими, параллельными оси Оу и оси . Направляющую можно задать, как линию пересечения поверхности цилиндра и соответствующей координатной плоскости, т.е. системой уравнений вида:

2. Уравнения конуса второго порядка с вершиной в начале координат:

(2.46)

(осями конуса служат оси Oz, Oy и Ох соответственно)

3. Каноническое уравнение эллипсоида: (2.47).

Частными случаями являются эллипсоиды вращения, например – поверхность, полученная вращением эллипса вокруг оси Оz (При а > с эллипсоид сжат, при a < c – удлинен) и сфера (при а = b = с = r получим

х2 + у2+ z2 + = r2 – уравнение сферы радиуса r с центром в начале координат).

4. Каноническое уравнение однополостногогиперболоида

(2.48)

(знак “ – ” может стоять перед любым из трех слагаемых левой части – это изменяет только положение поверхности в пространстве). Частные случаи – однополостные гиперболоиды вращения, например – поверхность, полученная вращением гиперболы вокруг оси Oz (мнимой оси гиперболы).

5. Каноническое уравнение двухполостного гиперболоида

(2.49)

(знак “ – ” может стоять перед любым из трех слагаемых левой части).

Частные случаи – двухполостные гиперболоиды вращения, например – поверхность, полученная вращением гиперболы вокруг оси Оz (действительной оси гиперболы).

6. Каноническое уравнение эллиптического параболоида

(p > 0, q > 0) (2.50)

(переменная z может поменяться местами с любой из переменных х и у – изменится положение поверхности в пространстве).

7. Каноническое уравнение гиперболического параболоида

(p > 0, q > 0) (2.51)

(переменная z может поменяться местами с любой из переменных х и у – изменится положение поверхности в пространстве).

Отметим, что представление об особенностях (форме) этих поверхностей легко получить, рассматривая сечения этих поверхностей плоскостями, перпендикулярными осям координат.

 

контрольные вопросы.

1) Какое множество точек в пространстве определяет уравнение ?

2) Каковы канонические уравнения цилиндров второго порядка; конуса второго порядка; эллипсоида; однополостного гиперболоида; двухполостного гиперболоида; эллиптического параболоида; гиперболического параболоида?


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.007 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал