Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Плоскость.
Рассмотрим в декартовом базисе произвольную плоскость Р и вектор нормали (перпендикулярный) к ней ` n (А, В, С). Возьмем в этой плоскости произвольную фиксированную точку М0(х0, у0, z0) и текущую точку М(х, у, z). Очевидно, что (см.(1.20) при j = p /2). Это уравнение плоскости в векторной форме. Переходя к координатам, получим общее уравнение плоскости А(х – х0) + В(у – у0) + С(z – z0) = 0 Þ Ах + Ву + Сz + D = 0 (2.25). (D = –Ах0– Ву0 – Сz0; А2 + В2 + С2 ¹ 0). Можно показать, что в декартовых координатах каждая плоскость определяется уравнением первой степени и, обратно, каждое уравнение первой степени определяет плоскость, (т.е. плоскость есть поверхность первого порядка и поверхность первого порядка есть плоскость). Рассмотрим некоторые частные случаи расположения плоскости, заданной общим уравнением: А = 0 – параллельна оси Ох; В = 0 – параллельна оси Оу; С = 0 – параллельна оси Оz. (Такие плоскости, перпендикулярные одной из координатных плоскостей, называют проектирующими); D = 0 – проходит через начало координат; А = В = 0 – перпендикулярна оси Оz (параллельна плоскости хОу); А = В = D = 0 – совпадает с плоскостью хОу (z = 0). Аналогично анализируются все остальные случаи. Если D ¹ 0, то, разделив обе части (2.25) на - D, можно привести уравнение плоскости к виду: а = – D /А, b = –D/ В, с =–D /С. Соотношение (2.26) называетcя уравнением плоскости в отрезках; а, b, с – абсцисса, ордината и аппликата точек пересечения плоскости с осями Ох, Оу, Оz, а |a|, |b|, |c| – длины отрезков, отсекаемых плоскостью на соответствующих осях от начала координат. Умножая обе части (2.25) на нормирующий множитель xcosa + ycosb + zcosg – p = 0 (2.27) где cosa = Аm, cosb = Вm, cosg = Сm – направляющие косинусы нормали к плоскости, р – расстояние до плоскости от начала координат. Рассмотрим основные соотношения, используемые в расчетах. Угол между плоскостями А1х + В1у + С1z + D1 = 0 и А2х + В2у + С2z + D2 = 0 легко определить как угол между нормалями этих плоскостей `n1 (А1, В1, С1) и
`n2 (А2, В2, С2):
Из (2.28) легко получить условие перпендикулярности А1А2 + В1 В2 + С1 С2 = 0 (2.29) и параллельности Расстояние от произвольной точки М0(х0, у0, z0) до плоскости (2.25) определяется выражением:
Уравнение плоскости, проходящей через три заданные точки М1(х1, у1, z1), М2(х2, у2, z2), М3(х3, у3, z3) удобнее всего записать используя условие компланарности (1.25) векторов
Приведем уравнение пучка плоскостей (т.е. множества плоскостей, проходящих через одну прямую) – его удобно использовать в ряде задач. (А1х + В1у + С1z + D1) + l(А2х + В2у + С2z + D2) = 0 (2.33) Где l Î R, а в скобках - уравнениядвух любых плоскостей пучка.
Контрольные вопросы. 1) Как проверить, что данная точка лежит на поверхности, заданной данным уравнением? 2) Каков характерный признак, отличающий уравнение плоскости в декартовой системе координат от уравнения других поверхностей? 3) Как расположена плоскость относительно системы координат, если в её уравнении отсутствует: а) свободный член; б) одна из координат; в) две координаты; г) одна из координат и свободный член; д) две координаты и свободный член?
|