Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Вычисление длин дуг плоских кривых.






Пусть дана плоская кривая (рис. 10.1), уравнение которой , , где — непрерывно дифференцируемая функция на отрезке . Разобьем отрезок точками , на частей равной длины. Через точки деления проведем прямые, параллельные оси ординат . Точки пересечения этих прямых с кривой обозначим через . Соединив эти точки хордами, получим ломаную , вписанную в кривую . Пусть периметр этой ломаной равен . Длиной дуги будем называть число , равное пределу последовательности периметров :

Выведем формулу для вычисления длины дуги. Для этого сначала найдем периметр ломаной . Точка с координатами и и точка с координатами и являются концами го звена ломаной. Длину го звена вычислим по формуле расстояния между двумя точками плоскости:

. (10.3)

Учитывая, что – непрерывная дифференцируемая функция на отрезке , по формуле Лагранжа имеем

, (10.4)

 

где — некоторая точка интервала . Подставив выражение (10.4) в формулу (10.3), получим:

, (10.5)

 

где . Значит, периметр ломаной равен следующей сумме:

.

Получили интегральную сумму для непрерывной функции на отрезке . Так как предел этой суммы при n → ∞ существует, то согласно определению находим

.

Таким образом,


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал