Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Вычисление площадей поверхностей тел вращения.






Найдем площадь поверхности, полученной в результате вращения кривой АВ вокруг оси абсцисс. Пусть функция , непрерывно дифференцируема на отрезке . Через точки проведем прямые, параллельные оси ординат , а их точки пересечения с кривой обозначим через . Соединив эти точки хордами, получим ломаную . При ее вращении вокруг оси абсцисс получается поверхность, которая состоит из боковых поверхностей усеченных конусов, образованных вращением звеньев ломаной . Пусть площадь этой поверхности равна . Площадью поверхности тела вращения будем называть число , равное пределу последовательности площадей :

.

Площадь поверхности, описанной ломаной выразится следующим образом:

, (10.7)

где мы воспользовались формулой (10.5). Сумма (10.7) не является интегральной суммой для функции

, (10.8)

так как в слагаемом, соответствующем отрезку , фигурируют несколько точек этого отрезка, а именно , , . Однако можно доказать, что предел суммы (10.7) равен пределу интегральной суммы для функции (10.8), т. е.

Таким образом,

.

 

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал