Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Свойства сочетаний (биномиальных коэффициентов)
1) 2) 3) 4) 5) Сочетаниями с повторениями из n -типов по k -элементам (k и n в любом соотношении) называются все k -элементные последовательности из n -типов, отличающиеся составом элементов. 3.Сколькими способами можно разложить Так как в каждый ящик может попасть от 0 до Следствие 1. Если Следствие 2. Если в каждый ящик нужно положить не менее 4.Даны n различных предметов и k ящиков. Надо положить в первый ящик Так как элементы 1-го типа можно переставлять 5.Даны n различных предметов и k одинаковых ящиков. Надо положить в каждый ящик n=n/k предметов. Сколькими способами можно сделать такое распределение, если не интересует порядок предметов в ящике? Так как ящики не пронумерованы, то их тоже нужно переставлять, число таких перестановок, равно k!. Поэтому, полученный в предыдущей задаче результат необходимо разделить на k!. Получаем: 6.Сколькими способами можно распределить n одинаковых предметов в k ящиков? Выложим все предметы в один ряд, добавим к ним k–1 одинаковых разделяющих предмета. Переставим всеми возможными способами n данных одинаковых предметов и k–1 разделяющих. Каждая такая перестановка определяет один из способов распределения. А именно предметы, расположенные до первого разделителя, положим в первый ящик, предметы, расположенные между первым и вторым разделителем – во второй ящик и так далее, предметы расположенный после k–1 разделителя, – в k ящик. По формуле перестановок с повторениями число таких перестановок равно: 7.Сколько существует способов разложить n различных предметов в k ящиков, если нет никаких ограничений? Так как каждый предмет можно положить в любой из k ящиков, получаем: 8.Сколькими способами можно положить n различных предметов в k ящиков, если не должно быть пустых ящиков? Пусть r ящиков – пустые (
Тогда число распределений, при которых нет пустых ящиков, равно:
9.Имеется Пусть r ящиков – пустые (r =1, 2, 3, …, k -1).
Тогда число распределений, при которых нет пустых ящиков, равно:
, где 10.Сколько существует способов разложить n различных предметов в k различных ящиков, с учетом расположения предметов в ящиках, если все предметы должны быть использованы? Следствие. Выложим все предметы в один ряд, добавим к ним k–1 одинаковых разделяющих предмета. Переставим всеми возможными способами n данных различных предметов и k–1 разделяющих. Каждая такая перестановка определяет один из способов распределения. Представим 11.Сколько существует способов разложить n различных предметов в k различных ящиков, с учетом расположения предметов в ящиках, если не все n предметов могут быть использованы и некоторые ящики могут быть пустыми? Следствие. Разобьем все возможные комбинации на классы. В s класс войдут комбинации, в которых использованы ровно s предметов. Из предыдущей задачи известно, что s предметов можно разложить по k ящикам Всего в s класс войдут По правилу суммы получаем числоспособов разложить n различных предметов в k различных ящиков, с учетом расположения предметов в ящиках, если не все n предметов могут быть использованы и некоторые ящики могут быть пустыми:
|