Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Роль и значение графического метода в статистике
В результате сводки и дальнейшей обработки данных отчетности, различного рода обследований, переписей, наблюдений и т.п. экономист получает большое количество различных статистических показателей, которые он располагает в виде таблиц. Применение табличного метода значительно облегчает ориентацию в материале. Однако из этого не следует, что можно ограничиться одними таблицами. Для того чтобы сделать дальнейший шаг в понимании материала, надо от табличного метода перейти, к графическому. Графиком в статистике называется условные изображения статистических данных в виде различных геометрических образов: точек, линий, фигур и т.п. Главное достоинство графиков ‑ наглядность. В статистике графики используются, во-первых, в целях широкой популяризации данных и для облегчения их восприятия неспециалистами. Поэтому в различного рода докладах, речах и сообщениях представление статистических данных часто осуществляется при помощи графиков. Графики облегчают ознакомление масс со статистическими данными, оживляют таблицу, делают ее более доступной. Во-вторых, графики широко используются для обобщения и анализа статистических данных. Они находят большое применение в исследовательской работе. Именно при помощи графиков легче уяснить закономерности развития, распределения и размещения явлений. При помощи графиков в ряде случаев можно сделать выводы, которые на базе табличного метода были бы затруднительными. В-третьих, надо еще указать и на контрольное значение графиков. Под этим следует понимать тот факт, что во многих случаях различного рода ошибки и неточности выявляются при применении графиков, т.е. они иногда являются контролером точности расчётов и вычислений. В настоящее время графики прочно вошли в практику экономического анализа в связи с внедрением в статистическую работу новых математических методов и современной вычислительной техники на базе ПЭВМ, с использованием пакетов прикладных программ компьютерной графики. Наиболее распространёнными пакетами прикладных программ являются: «Excel», «Stat Graff», «Super call», «Hazard graphics» и др. Эти программы облегчают задачу исследователя в практическом применении графиков, так как с помощью дисплеев можно демонстрировать графики на световом экране, при необходимости оперативно изменяя в них одни данные, вводя другие и т. д. Такого рода графики в принципе могут заменить громоздкие таблицы компактными изображениями. Графики различаются по своему виду, и задача состоит в том, чтобы найти наиболее подходящий график. Нужно научиться правильно пользоваться орудием графического метода при изображении статистических данных. Кроме этого, график надо уметь строить, понимать принцип его построения. В противном случае можно выбрать правильный график, но сделать его таким, что он исказит действительную картину. Несмотря на большое разнообразие статистических графиков, существуют общие правила их построения. При построении графика важно найти такие способы изображения, которые наилучшим образом отвечают содержанию и логической природе изображаемых показателей. В графике, кроме заголовка, обязательно даются словесные пояснения условных знаков и смысла отдельных элементов графического образа. Сюда относятся названия и цифры масштабов, названия ломаных линий, цифры, характеризующие величины отдельных частей графика, ссылки на источники и т.д. Для графического представления статистических данных используется самые разнообразные виды графиков их можно классифицировать по разным признакам: характеру графического образа, способу построения и назначению (содержанию). По способу построения графики можно разделить на диаграммы и статистические карты (рис. 7.1). Различные виды диаграмм применяются для сравнения одноименных статистических данных, характеризующих разные территории или объекты. Наиболее распространённым видом таких диаграмм являются столбиковые диаграммы. Они представляют собой график, в котором различные величины представлены расположенными в высоту прямоугольниками. Столбиковые диаграммы применяются для сравнения некоторых объектов во времени. Масштабная шкала должна начинаться с нуля, быть непрерывной и на ней записываются лишь круглые или округленные значения. Столбики должны быть даны на некотором, одинаковом для всех расстоянии или вплотную друг к другу. Ширина столбиков берется произвольно. На шкале должна быть указана единица измерения. При выборе масштаба надо рассчитать так, чтобы максимальное число было представлено на графике.
Рис. 7.1 Классификация статистических графиков по способу построения и содержанию изображаемых данных Пример. Требуется изобразить с помощью столбиковой диаграммы данные о трудоустройстве граждан органами государственной службы занятости региона (цифры условные): в 2007 г. трудоустроено 2822 чел.; в 2006 г. – 2398 чел.; в 2005 г. – 2406 чел.; в 2004 г. – 2218 чел. Примем масштаб: 500 чел. Наглядность данной диаграммы достигается сравнением высоты столбиков (рис. 7.2). Рис. 7.2 Динамика трудоустройства граждан органами государственной службы занятости в регионе за 2004-2007 гг. Если прямоугольники, изображающие показатели, расположить не по вертикали, а по горизонтали, то диаграмма получит название ленточной. В качестве примера приведем полосовую диаграмму сравнения, характеризующую данные о количестве сотрудников на предприятии N за 2009 г. (рис. 7.3, табл. 7.1,)
Рис.7.3 ‑ Динамика количества сотрудников на предприятии N за 4 квартала 2009 г. Таблица 7.1 ‑ Данные о количестве сотрудников на предприятии N за 2009 гг.
Вторую большую группу показательных графиков составляют структурные диаграммы. Это такие диаграммы, в которых отдельные статистические совокупности сопоставляются по их структуре, характеризующейся соотношением разных параметров совокупности или ее отдельных частей. Пример. Рассмотрим построение секторной диаграммы по данным табл. 5.4. Таблица 7.2 ‑ Структура иностранных инвестиций в РФ в 2002 г
Рис. 7.4 ‑ Удельный вес иностранных инвестиций в РФ за 2002 г. Секторные диаграммы выглядят убедительно при существенных различиях сравниваемых структур, а при небольших различиях они могут быть не достаточно выразительны. Для изображения и внесения суждений о развитии явления во времени строится диаграммы динамики. В рядах динамики используются для наглядного изображения явлений многие диаграммы: столбиковые, ленточные, квадратные, круговые, линейные, радиальные и другие. Выбор вида диаграмм зависит в основном от особенностей исходных данных, от цели исследования. Например, если имеется ряд динамики с неравноотстоящими уровнями во времени (1913, 1940, 1950, 1980, 2000, 2005 гг), то часто для наглядности используют столбиковые, квадратные или круговые диаграммы. Они зрительно впечатляют, хорошо запоминаются, но не годны для изображения большого числа уровней, так как громоздки, и если число уровней в ряду динамики велико, то целесообразно применять линейные диаграммы, которые воспроизводят непрерывность процесса развития в виде непрерывной ломаной линии. Для построения линейных диаграмм используют систему прямоугольных координат. Обычно по оси абсцисс откладывается время (годы, месяца и т.д.), а по оси ординат наносят масштабы для отображения явлений или процессов. Особое внимание следует обратить на масштаб осей координат, так как от этого зависит общий вид графика. Обеспечение равновесия, пропорциональности между осями координат необходимо в диаграмме, так как нарушение равновесия дает неправильное изображение развития явления. Если масштаб для шкалы на оси абсцисс очень растянут по сравнению с масштабом на оси ординат, то колебание в динамике явлений мало выделяются, и наоборот, преувеличение масштаба по оси ординат по сравнению с масштабом на оси абсцисс дает резкие колебания. Если в ряду динамики данные за некоторые года отсутствуют, это должно быть учтено при построении графика. Равным периодом времени и размером уровня должны соответствовать равные отрезки масштабной шкалы. Пример. Рассмотрим построение линейной диаграммы на основании следующих данных:
Таблица 7.3 ‑ Динамика валового сбора кормовых в регионе за 1995-2004 гг.
Изображение динамики валового сбора кормовых культур на координатной сетке с неразрывной шкалой значений, начинающихся с нуля, вряд ли целесообразно, так как 2/3 поля диаграммы остается неиспользованным и ничего не дает для выразительности изображения. Поэтому в данных условиях рекомендуется строить шкалу без вертикального нуля, то есть шкала значений разрывается недалеко от нулевой линии и на диаграмму попадает лишь часть возможного поля графика. Это не приводит к искажениям в изображении динамики явления и процесс его изменения рисуется диаграммой более четко (7.5). Рис. 7.5 ‑. Динамика валового сбора кормовых культур в регионе за 1995-2004 гг.
Контрольные задания По данным статистических сборников о численности населения, динамики производства отдельных видов продукции и др. показателям за последние 5-10 лет постройте диаграммы и графики.
|