Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Коротко о колебаниях






Колебания - это повторяющиеся ограниченные движения относительно некоего среднего состояния, которое в частном случае может быть состоянием равновесия. Упругая система, выведенная каким либо путем из состояния равновесия, приходит в колебательное движение.

Это определение становится вполне современным и общим, если под состоянием равновесия понимать упругое равновесие, то есть равновесие под действием статических нагрузок, при которых в системе возникают деформации и напряжения.

При колебаниях нагруженных и деформированных систем к статическим деформациям и перемещениям (прогибам, углам закручивания) добавляются деформации и перемещения динамические, определяемые амплитудами колебаний. Как правило, в технике мы имеем дело именно с такими колебаниями.

Существуют понятия: собственные колебания и колебания вынужденные. Собственные - колебания, свойственные системе, после полного освобождения ее от ранее приложенных нагрузок. Они продолжаются до тех пор, пока энергия, сообщенная ранее системе, не израсходуется на работу сил трения внутри системы (материала) и трения с внешней средой. Вынужденные - колебания под действием переменных внешних сил, которые называются возмущающими.

Промежуток времени Т между двумя последовательными максимальными отклонениями упругой системы от положения равновесия называется периодом колебаний. Величина, обратная периоду, называется частотой колебаний:

Она измеряется в герцах - числом колебаний в секунду. Число колебаний за секунд - называется круговой частотой и измеряется радианами в секунду.

Периодические колебания в частном случае называются гармоническими, если закон колебаний

.

Здесь Y - некоторая координата (прогиб или угол закручивания), а - амплитуда колебаний, t - текущее время, - начальная фаза.

Разложение периодических колебаний на простые гармонические называют гармоническим анализом.

При колебаниях упругой системы возникают восстанавливающие силы, определяемые упругой характеристикой F. Если эти силы подчиняются линейному закону

F = CY,

то система называется линейной, а коэффициент С - коэффициентом жесткости. Эта сила вызывает ускорение системы (точкой обозначается производная по времени), а инерционная сила, возникающая в результате этого движения, пропорциональна массе системы m и равна . По принципу Даламбера задачу движения можно эквивалентно заменить задачей равновесия, если в группу сил действующих на систему ввести инерционные (Даламберовы) силы, то есть

m + C = 0 (1)

Это и будет уравнение движения системы.

Идеальную систему, в которой запас сообщенной ей энергии при колебаниях не изменяется, называют консервативной. Таких систем в природе не существует, но существуют системы, близкие к консервативным и принятая идеализация помогает выполнять их исследования.

Если колебания происходят в вязкой среде, то уравнение (1) примет вид

m + k + CY = 0 (2)

где k - коэффициент вязкого трения. Колебания в этом случае будут затухающими, энергия, сообщенная системе, будет расходоваться и амплитуда колебаний уменьшаться. Если k и С зависят от перемещений Y нелинейно, то и колебательная система называется нелинейной.

 


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал