Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Соединения с изолированными ядрами
Бифенил (фенилбензол, дифенил) является простейшей системой данного типа соединений: Молекула бифенила характеризуется свободным вращением ядер вокруг центральной связи; бензольные кольца копланарны. В основном состоянии молекулы бифенила между ядрами существует слабое сопряжение и каждый из них сохраняет свою индивидуальность. В принципе бифенил во многих случаях можно рассматривать как монозамещенный бензол, но с некоторыми оговорками. Так, в рассмотренных выше монозамещенных бензолах заместитель участвует в делокализации положительного заряда в σ -комплексе при SE реакции по орто- или пара-положениям. В бифениле орто-положения атакуемого бензольного ядра в значительной степени экранированы атомами водорода в орто-положениях второго ядра, рассматриваемого в качестве заместителя. Поэтому реакция электрофильного замещения будет протекать преимущественно по пара-положениям, что представлено на схеме: Дифенилметан. В данной молекуле оба бензольных ядра соединены метиленовой группой, поэтому они в значительной степени автономны и каждое из них ведет себя как монозамещенный бензол. В отличие от бифенила в дифенилметане бензольные ядра изолированы и между ними сопряжение отсутствует. Получить дифенилметан можно по реакции Фриделя – Крафтса из бензилхлорида и бензола: Химические свойства дифенилметана очень напоминают толуол: в SE реакциях замещение может идти по обоим ядрам с образованием ди- и тетразамещенных производных: Атомы водорода метиленовой группы подвижны и могут замещаться: Трифенилметан Для получения трифенилметана используют хлороформ и бензол в условиях реакции Фриделя-Крафтса. Для трифенилметана характерны SE реакции по ароматическим ядрам. Однако с точки зрения практической значимости наиболее важными являются превращения с участием центрального (метанового) углеродного атома. Это связано с образованием стабильных частиц – карбаниона, радикала и карбокатиона. Центральный углеродный атом находится в sp3-гибридном состоянии, однако атом водорода может быть замещен, например, на атом натрия, что свидетельствует о С–Н кислотных свойствах: Трифенилметан, легко окисляясь, переходит в трифенилкарбинол: Трифенилкарбинол представляет собой третичный спирт, который в присутствии сильных минеральных кислот может образовать катион: Если на трифенилхлорметан подействовать металлом (Zn, Na, Ag и т.д.), то образуется свободный радикал: Существование стабильных частиц объясняется присутствием трех бензольных ядер. В тритильном карбанионе (трифенилметанид-ионе) отрицательный заряд делокализован между тремя бензольными ядрами. Сами же бензольные ядра в одной плоскости разместиться не могут из-за отталкиванивающего влияния о-атомов водорода. Эти ядра отклонены (вывернуты) от плоскости на 30 - 40°, напоминая воздушный винт самолета. В тритильном карбкатионе положительный заряд на центральном атоме углерода значительно делокализован и частично компенсируется р-электронами трех бензольных ядер. Причиной относительно высокой стабильности тритильного радикала является делокализация неспаренного электрона по π -электронной системе ароматических ядер. Многочисленные производные трифенилметана находят широкое применение в качестве красителей. В трифенилметановых красителях, преимущественно в пара-положениях, находятся сильные ауксохромы, чаще всего – N(CH3)2 или NH2 и OH (см. также разд. 19.4.3.) При получении таких красителей вначале образуются бесцветные лейкооснования. Последние, окисляясь, переходят в карбинольные основания, которые далее превращаются в краситель.
|