Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Матрица предпочтений Блиндера 8 страница
Теория хаоса доводит идею Пуанкаре о всеобщности причинно-следственной связи до ее логического предела, отказываясь от понятия прерывности. То, что кажется прерывным, на самом деле является не резким разрывом с прошлым, а логическим следствием предшествующих событий. В мире хаоса нас всегда подстерегают потрясения. Из теории хаоса следует еще один вывод. Хорафас утверждает, что «в мире хаоса... точность предсказаний уменьшается с увеличением дистанции во времени». Это оставляет сторонников этой теории в плену деталей, в мире, где все сигналы очень слабы, а остальное всего лишь шум. Занявшись прогнозированием финансовых рынков, сторонники теории хаоса, сосредоточившись на изменчивости, накопили огромное количество данных о трансакциях, позволяющих им с некоторым успехом предсказывать изменения курса ценных бумаг, валюты и уровня риска на ближайшее будущее6. Они даже открыли, что колеса рулеток дают не совсем случайные результаты. Впрочем, открытые ими закономерности настолько незначительны, что ни один игрок не сможет разбогатеть с помощью этого открытия. Достижения теории хаоса представляются довольно скромными по сравнению с ее обещаниями. Сторонники этой теории взяли в руки бабочку, но не могут выявить все воздушные потоки, образующиеся от трепыхания ее крыльев. Впрочем, они стараются. Не так давно появились другие утонченные методы для предсказания будущего со странными названиями вроде генетических алгоритмов и нейронных сетей7. Эти методы нацелены главным образом на изучение природы изменчивости; для их использования нужны вычислительные возможности, которых не могут обеспечить самые мощные компьютеры. Целью генетических алгоритмов является копирование способа, каким гены переходят от одного поколения к другому. Сумевшие выжить гены создают модели, которые формируют наиболее крепкое и жизнеспособное потомствоГ). Нейронные сети моделируют работу человеческого мозга, отбирая из запрограммированного экспериментатором опыта те результаты, которые окажутся наиболее полезными в последующем опыте. Сторонники этой процедуры открыли в рамках одной системы шаблоны поведения, которые они могут использовать для предсказания поведения совершенно других систем. Теория утверждает, что все сложные системы, такие, как демократия, технический прогресс и фондовый рынок, характеризуются общими шаблонами и реакциями8.(Ал-Хорезми, математик, от имени которого произошло слово «алгоритм», наверняка удивился бы, познакомившись с «потомством», которое через 1200 лет дали его исследования).
Эти модели проливают яркий свет на сложность реальности, но выявление шаблонов, предшествующих возникновению других шаблонов на финансовых рынках или в результатах запусков рулетки, не доказывает наличия причинно-следственных связей. Сократ и Аристотель отнеслись бы к теории хаоса и теории нейронных сетей столь же скептически, как создатели этих концепций относятся к общепринятым теориям. Сходство с истиной — это еще не истина. Пытаясь без каких-либо теоретических схем объяснить, как некие шаблоны воспроизводятся во времени или в разных системах, эти новации не очень убеждают в том, что сегодняшние сигналы станут причинами завтрашних событий. Нам остается только туманная последовательность данных, которые поставляются огромной мощью компьютеров. Поэтому средства прогнозирования, основанные на нелинейных моделях и компьютерной гимнастике, стоят перед теми же самыми препятствиями, что и общепринятая теория вероятностей: модель всегда исходит из данных о прошлом.
Прошлое редко предупреждает нас о будущих потрясениях. Войны, этнические чистки, депрессии, финансовые бумы и спады приходят и уходят, однако являются они всегда неожиданно. Но проходит время, и, когда мы изучаем историю происшедшего, истоки потрясений становятся столь очевидными, что мы с трудом понимаем, как участники событий могли не обратить внимания на то, что их ожидало. В мире финансов неожиданности неизбежны. Например, в конце 1950-х годов инвесторы обнаружили, что изменилось освященное восьмидесятилетним опытом соотношение, и тысяча долларов, вложенная в малорисковые высококачественные облигации, впервые в истории приносит больший доход, чем тысяча долларов, вложенная в рискованные обыкновенные акции 2). 2' С 1871-го по 1958 год доходность акций в среднем на 1, 3 процентного пункта превышала доходность облигаций с тремя мимолетными исключениями, последним в 1929 году. В статье в журнале «Fortune» за март 1959 года Жильбер Бурке заявил: «В США считалось само собой разумеющимся, что хорошие акции должны давать больший доход, чем хорошие облигации, и что в противном случае их цена должна немедленно упасть», см. [Bank Credit Analyst, 1995]. Есть основания считать, что акции были доходнее облигаций и до 1871 года, с которого берет начало надежная статистика данных о фондовом рынке. С 1958 года доходность облигаций превышает доходность акций в среднем на 3, 5 процентного пункта.
В начале 1970-х годов долгосрочные процентные ставки впервые после Гражданской войны поднялись выше 5% и по сей день остаются выше 5%. Учитывая замечательную стабильность ключевого соотношения между доходностью акций и облигаций и отсутствие на протяжении длительного периода направленной эволюции величины долгосрочных процентных ставок, никому и не снилось что-либо иное. Ни у кого не было оснований поступать так до возникновения про-тивоцикличной денежной и фискальной политики, в результате которой уровень цен начал устойчиво расти, вместо того чтобы расти при одних обстоятельствах и снижаться при других. Другими словами, эти коренные изменения, может, и не были непредсказуемы, но зато считались совершенно немыслимыми. А если эти события были непредсказуемы, как можно надеяться их предсказать с помощью количественных методов управления риском? Как мы можем программировать для компьютера концепции, которые не в силах запрограммировать для самих себя, которые лежат даже за пределом нашего воображения? Мы не в состоянии ввести в компьютер данные о будущем, потому что они нам недоступны. Поэтому мы впихиваем туда данные о прошлом, чтобы запустить механизм созданных нами моделей принятия решений, будь они линейными или нелинейными. Но здесь нас подстерегает логическая ловушка: реальные события прошлого образуют скорее последовательность взаимосвязанных событий, а не набор независимых наблюдений, как этого требуют законы теории вероятностей. История предоставляет нам только один образец экономики и рынков капитала, а не тысячи отдельных и случайно распределенных вариантов. Даже если распределение многих экономических и финансовых переменных приблизительно описывается ко-локолообразной кривой, мы никогда не получаем совершенной картины. Повторяю, сходство с правдой — это еще не правда. Это те возмущения и неправильности, за которыми скрываются потрясения. Наконец, наука об управлении риском иногда создает новые риски, даже когда берет под контроль старые. Наша вера в возможность управлять риском побуждает нас идти на такой риск, на какой мы без этого никогда бы не пошли. В большинстве случаев это оказывается выгодным, но следует остерегаться увеличения числа рисков в системе. Исследования показали, что ремни безопасности побуждают водителей к более агрессивной манере езды. В результате число аварий растет, хотя степень ущерба в каждом отдельном случае уменьшается.(Подробный анализ таких случаев см.: [Adams, 1995].).
Производные финансовые инструменты, созданные для защиты от риска, надоумили инвесторов использовать их для спекуляций, предполагающих такие риски, которых ни один менеджер не должен бы допускать. Распространение страховки портфелей в конце 1970-х годов стимулировало использование более рискованных методов управления портфелями. Таким же точно образом консервативные институциональные инвесторы используют диверсификацию портфелей для проведения более рискованных и еще не изученных операций, хотя диверсификация не является гарантией против убытков — она защищает только от полного разорения. Нет ничего более успокоительного и притягательного, чем экран компьютера с импозантной упорядоченностью чисел, яркостью красок и элегантностью диаграмм. Происходящее на экране захватывает нас и заставляет забыть, что компьютер только отвечает на вопросы, но не ставит их. Когда мы забываем об этом, компьютер усугубляет наши концептуальные ошибки. Те, кто живет только числами, могут обнаружить, что компьютер просто заменил оракулов, к которым в древние времена люди обращались за советом, когда нужно было делать выбор в условиях риска. В то же время нужно избегать пренебрежения числами, когда расчеты обещают большую точность решений, чем интуитивный подход, который, как показали Канеман и Тверски, часто ведет к непоследовательным и близоруким решеням. Г. Б. Эйри, один из многих замечательных математиков, который был директором Британской Королевской обсерватории, писал в 1849 году: «Я убежденный сторонник теории, гипотез, формул и других проявлений чистого рассудка, которые помогают заблуждающимся людям находить путь через камни преткновения и трясину эмпирических фактов»9. Главная тема этой книги — история того, как математические открытия ее героев определяли пути прогресса за последние 450 лет. В технике, медицине, науке, финансах, бизнесе и даже в сфере государственного управления решения, затрагивающие жизнь каждого из нас, теперь принимаются в соответствии с упорядоченными процедурами, которые значительно эффективнее приблизительных и произвольных методов прошлого. Благодаря этому удается избежать или по крайней мере смягчить последствия многих катастрофических ошибок. Игрок эпохи Ренессанса Кардано, геометр Паскаль, адвокат Ферма, монахи Пор-Рояля и чиновники Ньюингтона, замечательный галантерейщик и человек с вывихнутыми мозгами, Даниил Вернул-ли и его дядя Якоб, скрытный Гаусс и многоречивый Кветеле, шутник фон Нейман и тяжеловесный Моргенштерн, набожный де Муавр и агностик Найт, немногословный Блэк и говорливый Шольц, Кеннет Эрроу и Генри Маркович — все они внесли вклад в изменение наших представлений о риске. Теперь риск — это не шанс проиграть, а возможность выиграть, не проявление сил РОКА и БОЖЕСТВЕННОГО ПРЕДНАЧЕРТАНИЯ, а изощренные, использующие теорию вероятностей методы прогнозирования будущего, не беспомощное ожидание, а сознательный выбор. Даже противник механического использования методов теории вероятностей и квантификации неопределенного Кейнс признавал, что это направление мысли имеет немалое значение для человечества: Важность вероятностного подхода можно обосновать только тем, что им разумно руководствоваться в своих действиях, а практическую зависимость от него можно оправдать только тем, что, действуя, мы должны как-то его учитывать. Именно по этой причине мы и вынуждены опираться на вероятность в своем путешествии по жизни, ибо, как писал Локк, «в большей части наших забот по воле Божьей мы вынуждены довольствоваться только, позволю себе сказать, полумраком вероятности, соответствующим, я полагаю, уготованному нам состоянию испытуемой посредственности. Ему было угодно поселить нас здесь»10.
Примечания
|