Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Ошибки выборочного наблюдения, определение ошибки репрезентативности при различных способах отбора.
Выборочное наблюдение – наблюдение, при котором обследуют часть единиц изучаемой совокупности, на основе научно разработанных принципов, обеспечивающих получение достаточно достоверных данных для характеристики совокупности в целом. Совокупность, из которой производится отбор единиц, называется генеральной, а совокупность, которая состоит из отобранных единиц, называется выборочной. При любом способе отбора возникают ошибки выборочного наблюдения. Ошибки свойственные выборочному наблюдению называются ошибками репрезентативности. Они могут быть систематическими и случайными. Систематические ошибки допускаются при нарушении научного способа отбора. Случайные – расхождение между генеральными и выборочными характеристиками. Эти ошибки имеют место всегда, их можно предвидеть и уменьшить. Регулируя численность выборки ошибку можно свести к минимуму. При одинаковой численности выборки ошибка выборки будет меньше в той совокупности в которой признак варьирует в меньшей степени. Средняя ошибка выборки при повторном отборе: 1)для среднего значения признака: 2)для доли единиц обладающих определенным признаком: Приведенные формулы характеризуют среднюю величину отклонений сводных характеристик генеральной совокупности. То, что генеральная средняя или генеральная доля не выйдет за пределы может утверждать не с абсолютной достоверностью, а с определенной степенью вероятности. Доказано, что генеральная средняя и генеральная доля не выйдут за пределы средней ошибки выборки не во всех случаях, а лишь в 683 случаях из 1000. Что бы с большей точностью характеризовать полученные данные путем выборочного наблюдения, необходимо увеличить степень вероятности, которая достигается в расчете предельной ошибки выборки: Предельная ошибка выборки при повторном отборе: 1)для среднего значения признака: Средняя ошибка выборки при беспроводном отборе: 1)для среднего значения признака: Предельная ошибка выборки при бесповторном отборе: 1)для среднего значения признака: На основе предельной ошибки выборки рассчитываются пределы: 1) для среднего значения признака: Исчислив пределы для средней доли можно с определенной степенью вероятности утверждать, что среднее значение признака или доля альтернативного признака не выйдут за рассчитанные пределы. Величина ошибки выборки при беспроводном отборе всегда меньше, чем при повторном отборе.
|