![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Закон распределения случайной величины
Наиболее полным, исчерпывающим описанием случайной величины является ее закон распределения. Определение. Законом распределения случайной величины называется всякое соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями. Про случайную величину говорят, что она «распределена» по данному закону распределения или «подчинена» этому закону. Для дискретной случайной величины закон распределения может быть задан в виде таблицы, аналитически или графически. Простейшей формой задания закона распределения дискретной случайной величины X является таблица, в которой перечислены в порядке возрастания все возможные значения случайной величины и соответствующие им вероятности, т.е.
Такая таблица называется рядом распределения дискретной случайной величины. Отметим, что события X = x 1, X = x 2, …, X = xn, состоящие в том, что в результате испытания случайная величина Х примет соответственно значения x 1, x 2, …, xn, являются несовместными и единственно возможными, т.е. образуют полную группу. Следовательно, сумма их вероятностей равна единице, т.е.
Ряд распределения может быть изображен графически, если по оси абсцисс откладывать значения случайной величины, а оси ординат – соответствующие им вероятности. Соединение полученных точек образует ломаную линию, которую называют многоугольником или полигоном распределения вероятностей. Пример 4.1. Два стрелка делают по одному выстрелу в мишень. Составить закон распределения случайной величины Х – общего числа попаданий в мишень, если вероятность поражения мишени в одном выстреле для первого стрелка равна 0, 8, а для второго – 0, 6. Решение. Очевидно, что возможные значения Х – 0, 1, 2. Пусть А 1 – событие состоящее в том, что первый стрелок попадет в мишень, А 2 – второй стрелок попадет в мишень. Тогда Р (Х = 0) = Р ( Р (Х = 1) = Р (А 1 Р (Х = 2) = Р (А 1 А 2) = Р (А 1)· Р (А 2) = 0, 8·0, 6 = 0, 48. Записываем ряд распределения случайной величины Х.
Две случайные величины называются независимыми, если закон распределения одной из них не меняется от того, какие возможные значения приняла другая величина. Так если случайная величина Х может принимать значения xi (i = 1, 2, …, n), а случайная величина Y – значения yj (j = 1, 2, …, m), то независимость случайных величин X и Y означает независимость событий X = xi и Y = yj при любых i = 1, 2, …, n и j = 1, 2, …, m. В противном случае случайные величины называются зависимыми.
|