Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Факторные нагрузки после варимакс-вращения
Применив факторный анализ, исследователь выделил два фактора. Основной результат, который подлежит интерпретации исследователем, — таблица факторных нагрузок после варимакс-вращения (табл. 16.2). Не рассматривая пока шаги, приводящие к этому результату, попытаемся проинтерпретировать полученные данные. В нашем примере по фактору 1 (F1) максимальные нагрузки имеют переменные 1 и 2. Следовательно, фактор 1 и определяется этими переменными. Поскольку переменная 1 — счет в уме, а переменная 2 — продолжение числового ряда, то фактору 1 может быть присвоено название «арифметические способности», как показателю легкости оперирования числовым материалом. Точно также фактору 2 можно присвоить название «вербальные способности», как показателю словесного понимания. Нетрудно заместить, что переменные, определяющие фактор, сильнее связаны друг с другом, чем с другими переменными (табл. 16.1). Так, переменные 1 и 2, определяющие фактор 1, сильнее связаны друг с другом, чем с переменными 3, 4 и 5. Таким образом, за взаимосвязью пяти исходных измерений способностей при помощи факторного анализа обнаруживается действие двух латентных переменных (факторов). Интерпретация фактора через исходные переменные
Интерпретация факторов — одна из основных задач факторного анализа. Ее решение заключается в идентификации факторов через исходные переменные. Эта идентификация и осуществляется по результатам обработки, представленным в табл. 16.2. Основное содержание табл. 16.2 — величины a11, …, a25 — факторные нагрузки переменных 1... 5 (строки) по факторам 1 и 2 (столбцы). Факторные нагрузки — аналоги коэффициентов корреляции, показывают степень взаимосвязи соответствующих переменных и факторов: чем больше абсолютная величина факторной нагрузки, тем сильнее связь переменной с фактором, тем больше данная переменная обусловлена действием соответствующего фактора. Каждый фактор идентифицируется по тем переменным, с которыми он в наибольшей степени связан, то есть по переменным, имеющим по этому фактору наибольшие нагрузки. Идентификация фактора заключается, как правило, в присвоении ему имени, обобщающего по смыслу наименования входящих в него переменных. Если исследователя интересует только структура измеренных признаков, на этом факторный анализ завершается. Продолжая факторный анализ, исследователь далее может вычислить значения факторов для испытуемых, например, с целью их дифференциации по преобладанию арифметических или вербальных способностей. Выбирая факторный анализ как средство изучения корреляций, исследователь должен отдавать себе отчет в том, что это один из самых сложных и трудоемких методов. Зачастую нет веских оснований предполагать наличие факторов как скрытых причин изучаемых корреляции, и задача заключается лишь в обнаружении группировок тесно связанных переменных. Тогда целесообразнее вместо факторного анализа использовать кластерный анализ корреляций (см. главу 19). Помимо простоты, кластерный анализ обладает еще одним преимуществом: его применение не связано с потерей исходной информации о связях между переменными, что неизбежно при факторном анализе. И уже после выделения групп тесно связанных переменных можно попытаться применить факторный анализ для их объяснения. Итак, можно сформулировать основные задачи факторного анализа: 1. Исследование структуры взаимосвязей переменных. В этом случае каждая группировка переменных будет определяться фактором, по которому эти переменные имеют максимальные нагрузки. 2. Идентификация факторов как скрытых (латентных) переменных — причин взаимосвязи исходных переменных. 3. Вычисление значений факторов для испытуемых как новых, интегральных переменных. При этом число факторов существенно меньше числа исходных переменных. В этом смысле факторный анализ решает задачу сокращения количества признаков с минимальными потерями исходной информации.
|