Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Билет № 7: Тема: Устойчивость импульсных САР. Критерий устойчивости Раусса-Гурвица.
Критерий устойчивости Рауса-Гурвица — один из способов анализа линейной стационарной динамической системы на устойчивость, разработанный немецким математиком Адольфом Гурвицом. Наряду с критерием Рауса является представителем семейства алгебраических критериев устойчивости, в отличие от частотных критериев, таких как критерий устойчивости Найквиста. Достоинством метода является принципиальная простота, недостатком - необходимость выполнения операции вычисления определителя, которая связана с определенными вычислительными тонкостями (например, для больших матриц может оказаться значительной вычислительная ошибка). Метод работает с коэффициентами характеристического уравнения системы. Пусть — передаточная функция системы, а — характеристическое уравнение системы. Представим характеристический полином в виде Из коэффициентов характеристического уравнения строится определитель Гурвица по алгоритму: 1) по главной диагонали слева направо выставляются все коэффициенты характеристического уравнения от до ; 2) от каждого элемента диагонали вверх и вниз достраиваются столбцы определителя так, чтобы индексы убывали сверху вниз; 3) на место коэффициентов с индексами меньше нуля или больше ставятся нули. Анализируя условие критерия Гурвица, можно заметить его избыточность. Число неравенств можно уменьшить в два раза, используя теорему Льенара-Шипара. Впрочем, в вычислительном отношении сложность критерия уменьшается не существенно, так как при вычислении минора высокого порядка чаще всего необходимо вычисление миноров низших порядков.
|