Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Фактографические (формализованные) методы прогнозирования






 

Фактографические методы основаны на фактически имеющейся информации об объекте прогнозирования и его прошлом развитии.

Преимущество фактографических методов перед интуитивными состоит в возрастании объективности прогноза, расширении возможности рассмотрения различных вариантов и в автоматизации процесса прогнозирования, что позволяет экономить большое количество ресурсов. Однако при формализации многое остается за пределами анализа, и чем выше степень формализации, тем беднее в общем случае оказывается прогноз.

Формализованные методы делятся по общему принципу действия на четыре группы:

- экстраполяционные методы;

- системно-структурные методы и модели;

- ассоциативные методы;

- методы опережающей информации;

- математические методы и модели.

Методы прогнозной экстраполяции.

При формировании прогнозов с помощью экстраполяции обычно исходят из статистически складывающихся тенденций изменения тех или иных количественных характеристик объекта. Экстраполируются оценочные функциональные системные и структурные характеристики. Экстраполяционные методы являются одними из самых распространенных и наиболее разработанных среди всей совокупности методов прогно­зирования.

С помощью этих методов экстраполируются количественные параметры больших систем, количественные характеристики экономического, научного, производственного потенциала, данные о результа­тивности научно-технического прогресса, характеристики соотношения отдельных подсистем, блоков, элементов в системе показателей сложных систем и др.

Однако степень реальности такого рода прогнозов и соответ­ственно мера доверия к ним в значительной мере обусловливаются аргументированностью выбора пределов экстраполяции и стабиль­ностью соответствия «измерителей» по отношению к сущности рас­сматриваемого явления. Следует обратить внимание на то, что слож­ные объекты, как правило, не могут быть охарактеризованы одним параметром. В связи с этим можно сделать некоторое представление о последовательности действий при статистическом анализе тенден­ций и экстраполировании, которое состоит в следующем:

- во-первых, должно быть четкое определение задачи, выдвиже­ние гипотез о возможном развитии прогнозируемого объекта, обсуж­дение факторов, стимулирующих и препятствующих развитию данного объекта, определение необходимой экстраполяции и её допустимой дальности;

- во-вторых, выбор системы параметров, унификация различных единиц измерения, относящихся к каждому параметру в отдельности;

- в-третьих, сбор и систематизация данных. Перед сведением их в соответствующие таблицы еще раз проверяется однородность дан­ных и их сопоставимость: одни данные относятся к серийным изде­лиям, а другие могут характеризовать лишь конструируемые объекты;

- в-четвертых, когда вышеперечисленные требования выполнены, задача состоит в том, чтобы в ходе статистического анализа и не­посредственной экстраполяции данных выявить тенденции или симп­томы изменения изучаемых величин. В экстраполяционных прогнозах особо важным является не столько предсказание конкретных значе­ний изучаемого объекта или параметра в таком-то году, сколько своевременное фиксирование объективно намечающихся сдвигов, ле­жащих в зародыше назревающих тенденций.

Для повышения точности экстраполяции используются различные приемы. Один из них состоит, например, в том, чтобы экстраполи­руемую часть общей кривой развития (тренда) корректировать с уче­том реального опыта развития отрасли-аналога исследований или объекта, опережающих в своем развитии прогнозируемый объект.

Под трендом понимается характеристика основной закономер­ности движения во времени, в некоторой мере свободной от случай­ных воздействий. Тренд - это длительная тенденция изменения эко­номических показателей. При разработке моделей прогнозирования тренд оказывается основной составляющей прогнозируемого времен­ного ряда, на которую уже накладываются другие составляющие. Ре­зультат при этом связывается исключительно с ходом времени. Пред­полагается, что через время можно выразить влияние всех основ­ных факторов.

Под тенденцией развития понима­ют некоторое его общее направление, долговременную эволюцию. Обычно тенденцию стремятся представить в виде более или менее гладкой траектории.

Анализ показывает, что ни один из существующих методов не может дать достаточной точности прогнозов на 20-25 лет. Применяе­мый в прогнозировании метод экстраполяции не дает точных резуль­татов на длительный срок прогноза, потому что данный метод исхо­дит из прошлого и настоящего, и тем самым погрешность накапли­вается. Этот метод дает положительные результаты на ближайшую перспективу прогнозирования тех или иных объектов не более 5 лет.

Для нахождения параметров приближенных зависимостей между двумя или несколькими прогнозируемыми величинами по их эмпиричес­ким значениям применяется метод наименьших квадратов. Его сущ­ность состоит в минимизации суммы квадратов отклонений меж­ду наблюдаемыми (фактическими) величинами и соответствующими оценками (расчет­ными величинами), вычисленными по подобранному уравнению связи.

Этот метод лучше других соответствует идее усреднения как единичного влияния учтенных факторов, так и общего влияния неуч­тенных.

Рассмотрим простейшие приемы экстраполяции. Операцию экстра­поляции в общем виде можно представить в виде определения значе­ния функции:

(3)
,

где - экстраполируемое значение уровня;

L – период упреждения;

Уt – уровень, принятый за базу экстраполяции.

Под периодом упреждения при прогнозировании понимается от­резок времени от момента, для которого имеются последние статис­тические данные об изучаемом объекте, до момента, к которому относится прогноз.

Экстраполяция на основе среднего значения временного ряда. В самом простом случае при предположении о том, что средний уровень ряда не имеет тенденции к изменению или если это изменение незначительно, можно принять т.е. прогнозируемый уровень равен среднему значению уровней в прошлом.

(4)
Доверительные границы для средней при небольшом числе на­блюдений определяются следующим образом:

,

где t a – табличное значение;

t – статистики Стьюдента с n-1 степенями и уровнем вероятности p;

- средняя квадратическая ошибка средней величины.

В свою очередь, среднее квадратическое отклонение для выборки равно:

(5)

где yt – фактические значения показателя.

Доверительный интервал, полученный как t a , учитывает неопределенность, которая связана с оценкой средней величины.

Общая дисперсия, связанная как с колеблемостью выборочной средней, так и с варьированием индивидуальных значений вокруг средней, составит величину S2+S2/n. Таким образом, доверительные интервалы для прогностической оценки равны:

(6)

Пример.

Если ряд, характеризующий один из элементов рынка (спрос или продажу товаров) не имеет достаточно четкой тенденции развития, прогноз его развития с упреждением на 1-2 уровень может быть выполнен по среднему уровню ряда динамики:

 

=

 

где ŷ – средний уровень ряда;

yi – члены ряда динамики;

n – число членов ряда динамики.

Необходимо выполнить прогноз развития продаж товара А на 8-й и 9-й периоды, если ряд динамики продажи товара за семь дней прошедшего периода имеет следующий вид:

1 день – 1520 кг;

2 день – 1900 кг;

3 день – 1780 кг;

4 день – 1560 кг;

5 день – 1800 кг;

6 день – 1880 кг;

7 день – 1850 кг.

Решение.

Оценка такого рода свидетельствует, что продажа товара А не имеет тенденции к росту или снижению, а колеблется около средней величины.

 

= = 1756 кг

 

Следовательно, среднедневной прогноз составит примерно 1756 кг.

Далее необходимо рассчитать возможную среднюю ошибку прогноза:

 

µ = ± t √ ,

 

где σ 2 – дисперсия;

t – коэффициент кратности ошибок, равный 2.

Дисперсию определяем по формуле:

 

σ 2 = ∑

 

y yiŷ (yiŷ)2
  -236  
     
     
  -196  
     
     
     
Итого -  

 

σ 2 = = 20225,

 

µ = ± 2√ = ±107, 5

 

Следовательно, доверительный интервал прогноза составит от 1648, 5 (1756 – 107, 5) до 1863, 5 (1756 + 107, 5).

Экстраполяция по скользящей и экспоненциальной средней. Для краткосрочного прогнозирования наряду с другими приемами могут быть применены адаптивная или экспоненциальная скользящие сред­ние. Если прогнозирование ведется на один шаг вперед, то или , где Мt - адаптивная скользящая средняя; Nt - экспоненциальная средняя. Здесь доверительный интервал для скользящей средней можно определить по формуле (6), в которой число наблюдений обозначено символом n.

Экстраполяция на основе сред­него темпа. Если в основу прогностического расчета положен средний темп роста, то экстраполируемое значение уровня можно получить с помощью формулы: , где - средний темп роста, Уt - уровень, принятый за базу для экстра­поляции. Здесь принят только один путь развития - развитие по геометрической прогрессии, или по экспонентной кривой. Во мно­гих же случаях фактическое развитие явления следует иному зако­ну, и экстраполяция по среднему темпу нарушает основное допуще­ние, принимаемое при экстраполяции, - допущение о том, что раз­витие будет следовать основной тенденции - тренду, наблюдавшему­ся в прошлом. Чем больше фактический тренд отличается от экспоненты, тем больше данные, получаемые при экстраполяции тренда, будут отличаться от экстраполяции на основе среднего темпа.

Метод считается статистически надежным и может быть использован для прогнозирования, если значение коэффициента вариации не превышает 10%.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.011 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал