Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Раскрытие неопределенностей и вычисление пределов.
Начнем с определения Вейерштрасса предела функции в конечной точке и на бесконечности. Определение 1. Число называется пределом функции в точке , если для любого найдется такое положительное число , что для любого , удовлетворяющего неравенству , справедлива оценка . В этом случае пишут . Если соответствующее неравенство в определении предела выполнено только для всех или для всех , то говорят, что существует односторонний предел функции в точке ( или соответственно). Определение 2. Число называется пределом функции при , если для любого найдется такое число , что при выполнено неравенство . Если неравенство выполнено только для всех положительных или всех отрицательных значений аргумента , говорят об одностороннем пределе при или при . Функция называется непрерывной в точке , если . Как правило, любая композиция элементарных функций (типа , , , , , ) является непрерывной в любой точке определения. Поэтому вычисление предела таких функций в произвольной точке сводится к вычислению значения функции в этой точке. Если, однако, функция не определена в точке предела, этот прием не сработает. В таком случае говорят о наличии неопределенности в точке . Есть несколько стандартных типов неопределенностей и приемов вычисления предела (раскрытия неопределенности) в этих случаях.
Пределы алгебраических функций на бесконечности. Задача 2.1.а. Вычислить Решение. Старшая степень в числителе и знаменателе данной дроби равна 1. Поделим числитель и знаменатель одновременно на . Результат деления зависит от знака . Если , то тогда получаем: При получаем: Здесь использовано очевидное соотношение при любом , и формула , справедливая при .
|