Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Непрерывность и типы разрыва функций.
Имеется три типа разрывов функций. а) Устранимый разрыв, когда существует предел функции в точке , но он не равен значению функции в предельной точке . б) Разрыв первого рода, когда в точке существует предел слева и предел справа, однако они не равны между собой . в) Все остальные виды разрыва называются разрывами второго рода.
Задачи 2.3.а-2.3. б. Найти точки разрыва функций , и определить тип разрыва. Сделать схематический чертеж. Решение. Функция может иметь разрыв в точках , . В точке в пределе имеет место соотношение , то есть функция становится неограниченной в окрестности . Поскольку при , и при , то функция стремится к при , и к при . В точке ситуация сложнее. При в пределе получаем , то есть мы имеем дело с неопределенностью. Чтобы найти предел , воспользуемся правилом Лопиталя: . Получаем: Следовательно, В случае правостороннего предела ситуация проще: Таким образом, в точке также имеет место разрыв второго рода. Схематическое поведение графика изображено на рисунке.
0 7 10
Функция может иметь разрывы только в точках и . В окрестности точки функция имеет разрыв второго рода. При получаем, что , а при получаем, что . Найдем пределы при и при . Вновь используем правило Лопиталя. Пусть сначала .
При вычисления аналогичны:
Следовательно, у функции в точке имеется устранимый разрыв. Эскиз графика изображен на рисунке.
6 7 8 10
|