![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Закон достаточного основания.
Закон гласит, что «Из Закон логики, который формулируется следующим образом: всякое положение для того, чтобы считаться вполне достоверным, должно быть доказанным, т. е. должны быть известны достаточные основания, в силу которых оно считается истинным. Допустим, что учащийся, слушая рассказ учителя, встречается с рядом неизвестных ему положений. Например, он узнаёт, что древние египтяне имели совершенные музыкальные инструменты, что некоторые ультразвуки убивают простейшие живые организмы, что если в Средней Азии произойдёт землетрясение, то образовавшиеся при этом волны достигнут Москвы через несколько минут. Учащийся вправе сомневаться в истинности этих положений до тех пор, пока они не будут доказаны, объяснены, обоснованы. Как только они будут доказаны, как только будут приведены достаточные основания, подтверждающие их истинность, сомневаться в них уже нельзя. Другими словами: всякое доказанное положение непременно истинно. Закон достаточного основания направлен против нелогичного мышления, принимающего на веру ничем не обоснованные суждения, против всякого рода предрассудков и суеверий; он выражает то фундаментальное свойство логической мысли, которое называют обоснованностью или доказанностью. Запрещая принимать что-либо только на веру, этот закон выступает надежной преградой для любого интеллектуального мошенничества. Он является одним из главных принципов науки. 31. Законы логики и психологии: общая характеристика и анализ.
ü Зако́ н то́ ждества — закон логики, согласно которому в процессе рассуждения каждое осмысленное выражение (понятие, суждение) должно употребляться в одном и том же смысле. Предпосылкой его выполнимости является возможность различения и отождествления тех объектов, о которых идёт речь в данном рассуждении[1]. Мысль о предмете должна иметь определённое, устойчивое содержание, сколько бы раз она ни повторялась. Важнейшее свойство мышления — его определённость — выражается данным логическим законом. В формальной логике закон тождества принято выражать формулой: Символическая логика при построении исчислений высказываний оперирует формулами · · « · «≡» — знак эквивалентности. ü Закон исключённого третьего — закон классической логики, состоящий в том, что из двух высказываний — «А» или «не А» — одно обязательно является истинным, то есть два суждения, одно из которых является отрицанием другого, не могут быть одновременно ложными. Закон исключённого третьего является одним из основополагающих принципов «классической математики». С «интуиционистской» (и, в частности, «конструктивистской») точки зрения, установление истинности высказывания вида «А или не А» означает: · либо (а) установление истинности · либо (б) установление истинности его отрицания Поскольку, вообще говоря, не существует общего метода, позволяющего для любого высказывания за конечное число шагов установить его истинность или истинность его отрицания, закон исключённого третьего не должен применяться в рамках интуиционистского и конструктивного направлений в математике как аксиома. Формулировка В математической логике закон исключённого третьего выражается формулой где: · « · « ü Закон непротиворечия (закон противоречия) — закон логики, который гласит, что два несовместимых (противоречащих) суждения не могут быть одновременно истинными. По крайней мере, одно из них ложно[1]. Математическая запись: где: · « · « Закон противоречия является фундаментальным логическим законом, на котором построена вся современная математика. Он является тавтологией классической логики, а также большинства неклассических логик, в том числе интуиционистской логики. Всё же, существуют нетривиальные логические системы, в которых он не соблюдается, например, логика Клини. ü Зако́ н доста́ точного основа́ ния — закон логики, который формулируется следующим образом: всякое положение для того, чтобы считаться вполне достоверным, должно быть доказанным, т. е. должны быть известны достаточные основания, в силу которых оно считается истинным [1][2][3][4]. Допустим, что учащийся, слушая рассказ учителя, встречается с рядом неизвестных ему положений. Например, он узнаёт, что древние египтяне имели совершенные музыкальные инструменты, что некоторые ультразвуки убивают простейшие живые организмы, что если в Средней Азии произойдёт землетрясение, то образовавшиеся при этом волны достигнут Москвы через несколько минут. Учащийся вправе сомневаться в истинности этих положений до тех пор, пока они не будут доказаны, объяснены, обоснованы. Как только они будут доказаны, как только будут приведены достаточные основания, подтверждающие их истинность, сомневаться в них уже нельзя. Другими словами: всякое доказанное положение непременно истинно [1]. Закон достаточного основания направлен против нелогичного мышления, принимающего на веру ничем не обоснованные суждения, против всякого родапредрассудков и суеверий; он выражает то фундаментальное свойство логической мысли, которое называют обоснованностью или доказанностью. Запрещая принимать что-либо только на веру, этот закон выступает надёжной преградой для любого интеллектуального мошенничества. Он является одним из главныхпринципов науки (в отличие от псевдонауки)
ü Законы де Мо́ ргана (правила де Мо́ ргана) — логические правила, связывающие пары логических операцийпри помощи логического отрицания. Названы в честь шотландского математика Огастеса де Моргана. В краткой форме звучат так: Отрицание конъюнкции есть не что иное, как дизъюнкция отрицаний. Отрицание дизъюнкции есть не что иное, как конъюнкция отрицаний.
Огастес де Морган первоначально заметил, что в классической пропозициональной логике справедливы следующие соотношения: не (a и b) = (не a) или (не b) не (a или b) = (не a) и (не b) В математике это выглядит так:
ü Деду́ кция — метод мышления, следствием которого является логический вывод, в котором частное заключение выводится из общего. Цепь умозаключений (рассуждений), где звенья (высказывания) связаны между собой логическими выводами. Началом (посылками) дедукции являются аксиомы или просто гипотезы, имеющие характер общих утверждений («общее»), а концом — следствия из посылок, теоремы («частное»). Если посылки дедукции истинны, то истинны и её следствия. Дедукция — основное средство доказательства. Противоположно индукции. Пример простейшего дедуктивного умозаключения: 1. Все люди смертны. 2. Сократ — человек. 3. Следовательно, Сократ смертен.
|