![]() Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Выводы из сложных суждений.⇐ ПредыдущаяСтр 22 из 22
Умозаключения из сложных суждений делятся на условные, разделительные и условно- разделительные. Условные делятся на чисто-условные и условно-категорические. Разделительные делятся на чисто-разделительные и разделительно-категорические. Условно-разделительные (лем- матические) делятся на дилеммы, трилеммы, и вообще, полилеммы.
39. Индукция: общая характеристика.
Индукция — процесс логического вывода на основе перехода от частного положения к общему. Индуктивное умозаключение связывает частные предпосылки с заключением не строго через законы логики, а скорее через некоторые фактические, психологические или математические представления. Объективным основанием индуктивного умозаключения является всеобщая связь явлений в природе. Различают полную индукцию — метод доказательства, при котором утверждение доказывается для конечного числа частных случаев, исчерпывающих все возможности, и неполную индукцию — наблюдения за отдельными частными случаями наводят на гипотезу, которая, конечно, нуждается в доказательстве. Также для доказательств используется метод математической индукции, который позволяет осуществить полную индукцию для бесконечного счётного множества объектов. 40. Индуктивные умозаключения: определение, структура, классификация. Индукция — процесс логического вывода на основе перехода от частного положения к общему. Индуктивное умозаключение связывает частные предпосылки с заключением не строго через законы логики, а скорее через некоторые фактические, психологические или математические представления. Объективным основанием индуктивного умозаключения является всеобщая связь явлений в природе. Различают полную индукцию — метод доказательства, при котором утверждение доказывается для конечного числа частных случаев, исчерпывающих все возможности, и неполную индукцию — наблюдения за отдельными частными случаями наводят на гипотезу, которая, конечно, нуждается в доказательстве. Также для доказательств используется метод математической индукции, который позволяет осуществить полную индукцию для бесконечного счётного множества объектов.
|