яРСДНОЕДХЪ

цКЮБМЮЪ ЯРПЮМХЖЮ яКСВЮИМЮЪ ЯРПЮМХЖЮ

йюрецнпхх:

юБРНЛНАХКХюЯРПНМНЛХЪаХНКНЦХЪцЕНЦПЮТХЪдНЛ Х ЯЮДдПСЦХЕ ЪГШЙХдПСЦНЕхМТНПЛЮРХЙЮхЯРНПХЪйСКЭРСПЮкХРЕПЮРСПЮкНЦХЙЮлЮРЕЛЮРХЙЮлЕДХЖХМЮлЕРЮККСПЦХЪлЕУЮМХЙЮнАПЮГНБЮМХЕнУПЮМЮ РПСДЮоЕДЮЦНЦХЙЮоНКХРХЙЮоПЮБНоЯХУНКНЦХЪпЕКХЦХЪпХРНПХЙЮяНЖХНКНЦХЪяОНПРяРПНХРЕКЭЯРБНрЕУМНКНЦХЪрСПХГЛтХГХЙЮтХКНЯНТХЪтХМЮМЯШуХЛХЪвЕПВЕМХЕщЙНКНЦХЪщЙНМНЛХЙЮщКЕЙРПНМХЙЮ






аНАЛИЗ СТРУКТУРЫ КАЛИЕВОГО КАНАЛА С ВЫСОКИМ РАЗРЕШЕНИЕМ






Структура калиевых каналов Streptomyces lividans (KCSA каналы) была изучена рентгеновской кристаллографией с разрешением 3, 2А54). Бактериальные каналы относятся к классу калиевых каналов, субъединицы которых вместо шести трансмембранных доменов имеют только два. Другим примером такого двух-доменного белка является калиевый канал внутреннего выпрямления, который будет обсуждаться позже (см. рис. 3.8). Два сегмента калиевого канала являются структурными эквивалентами сегментов S5 и S6 в потенциал-активируемых каналах. Несмотря на разное число трансмембранных сегментов, аминокислотная последовательность в пору-формирующей петле S5-S6 удивительно консервативна у всех калиевых каналов 53· 55). Преимуществом исследования бактериального калиевого канала является то, что он может быть продуцирован в больших количествах, достаточных для кристаллизации, что делает возможным проведение рентгеновской дифракции.

KCSA канал является тетрамером. Рис. 3.7 представляет канал в разрезе и показывает большую часть его структурных деталей. Рядом с NH2-концом каждой субъединицы имеется наружная спираль, которая пронизывает мембрану от цитоплазматической стороны до наружной поверхности. За наружной спиралью следует короткая спираль, направленная в пору. Затем располагается внутренняя спираль, которая возвращается к цитоплазматической стороне. Соединяющие петли меж-


Глава 3. Структура ионных каналов                                                    63

Рис. 3.7. Структура калиевого кана ла. Поперечный срез калиевого канала К А типа, показывающий две из четырех субъединиц. Каждая субъединица имеет две трансмембранных спирали и короткую спираль, обращенную в пору. Петли, идущие от короткой спирали, образуют селективный фильтр канала.

Fig. 3.7. Potassium Channel Structure. Sectional view of a KSCA potassium channel showing two of four subumts, one on either side of the central pore. Each subunit has two membrane-spanning helices and a short helix pointing into the pore. The connections between the outer helices and the short helices of the four subunits form four turrets that surround the pore entrance and contain binding sites for blocking molecules. The four connections between the short helices and the inner helices combine to form the selectivity filter, which allows the permeation of potassium, cesium, and rubidium but excludes smaller cations such as sodium and lithium. (After Doyle et al., 1998.)

ду наружной и короткой спиралями образуют четыре возвышения, окружающие наружное отверстие поры и содержащие связывающие сайты для TEA и других блокирующих канал токсинов 53). В каждой субъединице петля между центральным концом короткой спирали и внутренней спиралью формирует структуру ионной поры. Четыре такие петли, объединяясь, образуют узкий проход, ответственный за ионную избирательность канала — селективный фильтр. Относительно большая центральная полость и нижняя внутренняя пора соединяют селективный фильтр с цитоплазмой.

Избирательность для калия достигается как размером, так и молекулярным строением селективного фильтра. Диаметр фильтра составляет около 0, 3 нм и аминокислоты в его стенке ориентированы таким образом, что последовательные кольца, образованные четырьмя карбоксильными группами (по одной от каждой субъединицы), обращены внутрь поры. Диаметр поры достаточен для прохождения дегидратированного иона калия (диаметром около 0, 27 нм). Следует заметить, что дегидратация проникающего иона могла бы потребовать значительной энергии (глава 2). Однако этот фактор минимизируется за счет кислорода стенки канала, который заменяет атомы кислорода воды в гидратированной молекуле. Ионы меньшего размера, такие как натрий (диаметр 0, 19 нм) или литий (диаметр 0, 12 нм), не способны проникнуть через калиевый канал, поскольку они не могут сформировать достаточно плотный контакт одновременно со всеми четырьмя кислородами, поэтому они остаются гидратированными. Ионы большего размера, такие как цезий (диаметр 0, 33 нм), не могут проникнуть через пору из--за своих размеров. Эти структурные основы ионной избирательности вполне согласуются с традиционными воззрениями на ионную проницаемость каналов56).

Исследователи надеются, что метод рентгеновской дифракции сможет обеспечить новыми данными о пока еще малоизученных структурных изменениях, происходящих при открытии ворот калиевого канала. Например, загадкой является локализация ворот, поскольку в калиевых каналах Shaker приложенные с цитоплазматической стороны вещества имеют при открытом канале свободный доступ вглубь поры, хотя тогда, когда каналы закрыты, они могут проникать внутрь канала только на очень короткую дистанцию. Следовательно, ворота должны находиться совсем рядом со входом, с цитоплазматической стороны ионной поры57).


64                                       Раздел II. Передача информации в нервной системе


оНДЕКХРЭЯЪ Я ДПСГЭЪЛХ:

mylektsii.su - лНХ кЕЙЖХХ - 2015-2024 ЦНД. (0.006 ЯЕЙ.)бЯЕ ЛЮРЕПХЮКШ ОПЕДЯРЮБКЕММШЕ МЮ ЯЮИРЕ ХЯЙКЧВХРЕКЭМН Я ЖЕКЭЧ НГМЮЙНЛКЕМХЪ ВХРЮРЕКЪЛХ Х МЕ ОПЕЯКЕДСЧР ЙНЛЛЕПВЕЯЙХУ ЖЕКЕИ ХКХ МЮПСЬЕМХЕ ЮБРНПЯЙХУ ОПЮБ оНФЮКНБЮРЭЯЪ МЮ ЛЮРЕПХЮК