Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Развитие глаза
ДИНАМИКА РАЗВИТИЯ ГЛАЗА. Индивидуум приобретает знания об окружающем его мире с помощью органов чувств. В этом разделе мы сосредоточим внимание на развитии глаза, потому что для него, вероятно, более, чем для какою-либо другого органа тела, необходимы точность и совершенство координации развития всех его компонентов. Развитие органа зрения начинается в стенке будущего промежуточного мозга. У человека это происходит на 22-й день развития, когда в стенке нервной трубки образуются латеральные выпячивания, которые впоследствии станут промежуточным мозгом. Дифференциальный рост выпячиваний приводит к образованию глазных пузырей, связанных с промежуточным мозгом глазными стебельками. Позже глазные пузыри приходят в контакт с эктодермальным покровным эпителием зародыша и индуцируют образование в нем хрусталиковых плакод (рис.
Гилберт С. Биология развития: В 3-х т. Т. I: Пер. с англ. — М.: Мир, 1993. — 228 с. 164 ГЛАВА 5
5.25) 1. Эта индукция является специфической, поскольку изолированные глазные пузыри, имплантированные под эпителий любой области головы, будут вызывать в нем образование хрусталиковой ткани вместо эпидермальных клеток. В отсутствие контакта с глазным пузырем хрусталик не образуется. Необходимость тесного контакта между глазными пузырями и покровным эпителием подтверждается не только в экспериментах с трансплантацией глазных пузырей, но и нарушениями в развитии глаз у некоторых мутантов. Например, у мутантов мыши eyeless глазные пузыри не соприкасаются с покровным эпителием и формирование глаза прекращается (Webster et al., 1984). Сформировавшись, хрусталиковая плакода в свою очередь вызывает изменения в глазном пузыре, передняя стенка которого инвагинирует и пузырь превращается в двустенную глазную чашу (рис. 5.26). По мере продолжения инвагинации глазной стебелек, соединяющий глазную чашу и головной мозг, сужается и связь между ними редуцируется до узкой щели. Одновременно с этим два слоя глазной чаши начинают дифференцироваться в разных направлениях. Клетки наружного слоя продуцируют пигмент и в конце концов образуют пигментированный слой, называемый пигментной сетчаткой. Число клеток внутреннего слоя быстро увеличивается, и эти клетки дают начало множеству светочувствительных (фоторецепторных) нейронов, глиальных клеток, промежуточных нейронов и ганглиозных клеток. Все эти клетки в совокупности составляют нейральную ретину, или сетчатку. Аксоны ганглиозных клеток нейральной сетчатки встречаются у основания глаза и далее проходят по глазному стебельку, который после этого начинают называть зрительным нервом.
1 Процессы индукции, участвующие в формировании глаза, подробно рассматриваются в гл. 8 и 16.
Гилберт С. Биология развития: В 3-х т. Т. I: Пер. с англ. — М.: Мир, 1993. — 228 с. ________________ РАННЕЕ РАЗВИТИЕ ПОЗВОНОЧНЫХ. ЭКТОДЕРМА________________________________________ 165
ДИФФЕРЕНЦИРОВКА НЕЙРАЛЬНОЙ СЕТЧАТКИ. Подобно тому как это происходит в коре головного мозга и мозжечка, в сетчатке по мере ее развития разные нейроны группируются в слои свето- и цветочувствительных фоторецепторных клеток, тел ганглиозных клеток и биполярных промежуточных нейронов, передающих электрические стимулы от палочек и колбочек к ганглиозным клеткам (рис. 5.27). В дополнение к ним имеются многочисленные глиальные клетки, поддерживающие целостность сетчатки, а также амакриновые и горизонтальные нейроны, которые передают электрические импульсы в горизонтальном направлении. На ранних стадиях развития сетчатки образование ее слоев обусловлено делением клеток герминативного слоя, их миграцией и дифференциальной гибелью. Формирование этой сложно структурированной ткани представляет собой одну из наиболее интенсивно изучаемых проблем нейробиологии развития. Недавно было показано (Turner, Cepko, 1987), что любая единичная клетка-предшественник нейробласта может дать начало по меньшей мере трем типам нейронов или двум типам нейронов и одному типу глиальных клеток. Этот анализ был осуществлен с помощью очень хитроумного способа мечения клеток, происходящих из одной конкретной клетки-предшественника. Новорожденным крысятам (с еще развивающейся сетчаткой) в заднюю стенку глаза инъецировали вирус, который мог включаться в ДНК клеток глаза. Этот вирус содержал ген β -галактозидазы (отсутствующий в сетчатке глаза крысы), который должен был экспрессироваться в инфицированных клетках. Через месяц после введе-
Гилберт С. Биология развития: В 3-х т. Т. I: Пер. с англ. — М.: Мир, 1993. — 228 с. 166 ГЛАВА 6
ния вируса сетчатку удаляли и окрашивали красителем, выявляющим присутствие β -галактозидазы. В синий цвет должны были окраситься только потомки инфицированных клеток. На рис. 5.28 показана одна из полос клеток, происшедших от инфицированной клетки-предшественника. Краситель виден в пяти палочках, биполярном нейроне и мюллеровской глиальной клетке. Из трех основных типов нейронов сетчатки (ганглиозные, биполярные и фоторецепторные) фоторецепторные палочки и колбочки, вероятно, завершают свою дифференцировку последними. По мере развития этих наружных нейронов тело каждого из них образует вырост, содержащий некоторые специализированные органеллы. Эти органеллы удлиняют вырост и определяют размер и форму фотореактивных областей (Detwiler, 1932). Клеточные мембраны наружных нейронов складываются, образуя мешки, в которых размещаются фоторецептивные (зрительные) пигменты. Свет индуцирует химические изменения этих пигментов, приводящие в конечном счете к изменению мембранного потенциала. Изменение мембранного потенциала влияет на высвобождение нейромедиаторов из группы биполярных нейронов, которые переключают электрический сигнал на ганглиозные клетки. Аксоны этих клеток, соединяясь в пучки, образуют зрительный нерв, по которому полученная информация передается в головной мозг (Fesenko et al., 1985; Stryer, 1986).
|