Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Статистическая значимость коэффициентов уравнения линейной регрессии.
Наиболее важной на начальном этапе статистического анализа построенной модели все же является задача установления наличия линейной зависимости между Y и X. Эта проблема может быть решена по схеме: H0: b1 = 0, H1: b1 ≠ 0. Гипотеза в такой постановке обычно называется гипотезой о статистической значимости коэффициента регрессии. При этом, если H0 принимается, то есть основания считать, что величина Y не зависит от Х. В этом случае говорят, что коэффициент b1 статистически незначим (он слишком близок к нулю). При отклонении H0 коэффициент b1 считается статистически значимым, что указывает на наличие определенной линейной зависимости между Y и X. В данном случае рассматривается двусторонняя критическая область, т. к. важным является именно отличие от нуля коэффициента регрессии, и он может быть как положительным, так и отрицательным. Предположим, что β 1 = 0, то формально значимость оцененного коэффициента регрессии b1 проверяется с помощью анализа отношения его величины к его стандартной ошибке: В случае выполнения исходных предпосылок модели эта дробь имеет распределение Стьюдента с числом степеней свободы ν = n − 2, где n − число наблюдений. Данное отношение называется t-статистикой. Для t-статистики проверяется нулевая гипотеза о равенстве ее нулю. Очевидно, t = 0 равнозначно b1 = 0, поскольку t пропорциональна b1. Фактически это свидетельствует об отсутствии линейной связи между X и Y. По аналогичной схеме на основе t-статистики проверяется гипотеза о статистической значимости коэффициента b0:
для парной регрессии более важным является анализ статистической значимости коэффициента b1, т. к. именно в нем скрыто влияние объясняющей переменной Х на зависимую переменную Y.
|