Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Краткие теоритические сведения






Для наглядного представления сложной системы как совокупности элементов и связей между ними используются структурные схемы.

Структурной схемой называется схема САУ, изображенная в виде соединения ПФ составляющих ее звеньев.

Структурная схема показывает строение автоматической системы, наличие внешних воздействий и точки их приложения, пути распространения воздействий и выходную величину. Динамическое или статическое звено изображается прямоугольником, в котором ука)зывается ПФ звена или ее математическое выражение. Воздействия на систему и влияние звеньев друг на друга (сигналы) изображаются стрелками. В каждом звене воздействие передается только от входа звена к его выходу.

На динамическое звено может воздействовать лишь одна входная величина, поэтому используются блоки суммирования и сравнения сигналов. Суммироваться и сравниваться могут лишь сигналы одной и той же физической природы.

Структурная схема может быть составлена по уравнению системы в пространстве состояний или по дифференциальным уравнениям системы. При составлении структурной схемы удобно начинать с изображения задающего воздействия и располагать динамические звенья, составляющие прямую цепь системы, слева направо до регулируемой величины. Тогда основная обратная связь и местные обратные связи будут направлены справа налево.

Различные способы преобразования структурных схем облегчают определение ПФ сложных САУ и дают возможность привести многоконтурную систему к эквивалентной ей одноконтурной схеме.

Преобразование структурной схемы должно осуществляться на основании правил. Правила преобразования структурных схем можно найти в справочной литературе [1, 2], основные из них приведены в табл. 3.1.

При выполнении преобразований следует каждое имеющееся в схеме типовое соединение заменить эквивалентным звеном. Затем можно выполнить перенос точек разветвления и сумматоров, чтобы в преобразованной схеме образовались новые типовые соединения звеньев. Эти соединения опять заменяются эквивалентными звеньями, затем вновь может потребоваться перенос точек разветвления и сумматоров и т. д.

 

 

Таблица 3.1.

Пример. Пусть необходимо получить эквивалентное представление для структуры, приведенной на рис. 3.1.

Рис.3.1. Исходная структура САУ.

 

Рис. 3.2. Перенос узла через сумматор

 

Рис. 3.3. Свертывание обратной связи и последовательного соединения

Рис. 3.4. Свертывание обратной связи и параллельного соединения

Рис. 3.5. Свертывание последовательного соединения

Таким образом, первый способ преобразования структурных схем заключается в непосредственном использовании правил, приведенных в табл.3.1. Неудобство использования этого подхода заключается в том, что порядок применения формул здесь достаточно произволен, возможны ошибочные шаги, усложняющие поиск решения.

Второй способ для получения ПФ многоконтурной системы заключается в использовании модели системы в виде сигнального графа. Сигнальный граф позволяет графически описать линейные связи между переменными, он состоит из узлов (вершин) и соединяющих их направленных ветвей.

Ветвь соответствует блоку структурной схемы, она отражает зависимость между входной и выходной переменными. Сумма всех сигналов, входящих в узел, образует соответствующую этому узлу переменную.

Последовательность ветвей между двумя узлами называется путем. Контуром называется замкнутый путь, который начинается и заканчивается в одном и том же узле, причем ни один узел не встречается на этом пути дважды. Коэффициент передачи контура – это произведение всех входящих в него дуг. Контуры называются некасающимися, если они не имеют общих узлов. Сигнальный граф однозначно соответствует структурной схеме. Пусть X (s) и Y (s) – входная и выходная переменные системы. Тогда для вычисления ПФ системы управления по ее графу можно воспользоваться формулой Мейсона:

где Pii- й путь от входа к выходу; N – количество путей; ∆ – определитель графа;

i – дополнительный множитель для пути.

 

Определитель графа получается по формуле:

 

где – сумма коэффициентов передачи всех отдельных контуров;

– сумма произведений всех возможных комбинаций из двух некасающихся контуров;

– сумма произведений всех возможных комбинаций из трех некасающихся контуров. Дополнительный множитель для i-го пути равен определителю графа, в котором приравнены нулю коэффициенты передачи контуров, касающихся этого пути.

Рассмотрим пример получения ПФ многоконтурной системы с использованием формулы Мейсона для структуры рис. 3.1, которой соответствует граф, показанный на рис. 3.6. От входа к выходу ведут два пути:

 

Рис. 3. 6. Описание системы управления сигнальным графом

P1=W1W3W5W6

P2= W2W3W5W6.

В графе есть два контура:

L1=–W3W5W4

L2=–W5W6W7.

Контур L1 касается контура L2, поэтому определитель графа вычисляется по формуле:

∆ = 1− (L1+L2).

Контуры в этом примере касаются всех путей, поэтому дополнительные множители путей

1=∆ 2=1.

Окончательно можно записать:

Таким образом, использование сигнальных графов и применение формулы Мейсона позволяет алгоритмизировать процесс упрощения структурной схемы.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2024 год. (0.018 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал