Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Если в точке функция имеет конечные односторонние пределы и , но они не равны друг другу, то называется точкой разрыва 1-ого рода.






3) В остальных случаях называется точкой разрыва 2 -ого рода.

Функция называется непрерывной на отрезке , если она непрерывна в каждой его точке (в точке - непрерывна справа, в точке - непрерывна слева). Функция непрерывная на отрезке обладает свойствами: 1) ограничена на ; 2) достигает на отрезке своего наименьшего значения и наибольшего значения .

Прямая называется асимптотой графика функции , если расстояние от точки до прямой стремится к нулю при бесконечном удалении точки от начала координат.

Прямая называется вертикальной асимптотой графика функции , если хотя бы один из односторонних пределов или равен бесконечности.

Прямая является вертикальной асимптотой, тогда и только тогда, когда является точкой бесконечного разрыва функции . Непрерывные функции не имеют вертикальных асимптот.

Прямая называется наклонной асимптотой графика функции при (при ), если (соответственно, ). Частным случаем наклонной асимптоты (при ) является горизонтальная асимптота.

Прямая является наклонной асимптотой графика функции при (при ) тогда и только тогда, когда одновременно существуют пределы: и (соответственно, и ).

Тема 8. Производная и дифференциал функции.

Приращением функции в точке , соответствующим приращению аргумента называется выражение .

Производной 1-ого порядка функции в точке называется конечный предел . Геометрический смысл производной состоит в том, что число равно угловому коэффициенту касательной к графику функции в точке : , где - угол наклона касательной к оси прямоугольной декартовой системы координат .

Функция, имеющая производную в данной точке, называется дифференцируемой в этой точке. Необходимым условием дифференцируемости в точке является непрерывность функции в данной точке.

Любая элементарная функция дифференцируема во всякой внутренней точке естественной области определения функции , в которой аналитическое выражение её производной имеет смысл. Производная , рассматриваемая на множестве тех точек , где она существует, сама является функцией. Операция нахождения производной называется также дифференцированием функции .


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.006 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал