Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Тема 10. Неопределённый интеграл.
Функция называется первообразной для функции на промежутке , если для всех . Функция может иметь различные первообразные, но все они отличаются друг от друга только постоянными слагаемыми. Поэтому все первообразные для содержатся в выражении , где - произвольная постоянная, которое и называется неопределённым интегралом от функции и обозначается . Таким образом, по определению . Операция нахождения первообразной или неопределённого интеграла от функции называется интегрированием этой функции. Функция для которой на промежутке существует первообразная или неопределённый интеграл называется интегрируемой на этом промежутке. Первообразная и неопределённый интеграл на промежутке существуют у любой непрерывной на этом промежутке функции. Нахождение неопределённого интеграла состоит в таком преобразовании подынтегрального выражения, чтобы получить интегралы из таблицы основных интегралов (приложение 6.3). Основные свойства неопределённого интеграла: 1.. 2.. 3. (). 4.. 5. Если , то , . Основными методами интегрирования являются: непосредственное интегрирование, интегрирование заменой переменной и по частям. Непосредственным интегрированием (интегрированием методом разложения) функции называют отыскание неопределённого интеграла с помощью тождественных преобразований подынтегральной функции , свойств 3-4 неопределённого интеграла и таблицы основных интегралов. Часто, заменой переменной интегрирования , удаётся свести нахождение интеграла к нахождению более простого интеграла с последующей заменой . Очень часто применяют следующий способ замены переменной интегрирования: , где - некоторая дифференцируемая функция. Функция подбирается таким образом, чтобы подынтегральное выражение приняло более удобный для интегрирования вид. Выбор её определяется конкретным видом подынтегрального выражения. Если и - дифференцируемые функции, то справедлива формула интегрирования по частям: или кратко . Эта формула используется в тех случаях для вычисления , когда подынтегральное выражение можно так представить в виде , что интеграл может оказаться проще интеграла . Этим методом вычисляются: 1) интегралы вида , , , , причём в качестве выбирается ; 2) интегралы, подынтегральная функция которых содержит в качестве множителя одну из следующих функций: , , , , , , причём в качестве выбирается одна из указанных выше функций. Указанные группы интегралов не исчерпывают всех без исключения интегралов, берущихся методом интегрирования по частям. Вычисление интегралов вида и , выделяя в квадратном трёхчлене полный квадрат и делая замену переменной интегрирования , сводят к вычислению табличных интегралов (см. приложение 6.3) и интегралов вида и , которые сводят к табличным заменой переменной .
|