Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Формальная программа и ее история
Формализм — один из подходов к философии математики, пытающийся свести проблему оснований математики к изучению формальных систем. Наряду с логицизмом и интуиционизмом считался в XX веке одним из направлений фундаментализма в философии математики. Формализм возник в начале XX века в математической школе Гильберта в рамках попытки свести в единую систему строгие обоснования различных областей математики. Развивался сотрудниками(учениками) Гильберта Аккерманом, П. Бернайсом, фон Нейманом. В отличие от логицизма, формализм не претендовал на построение единой для всей математики формальной теории, наподобие теории множеств или теории типов. В отличие от интуиционизма, формализм не отказывался от построения теорий с «сомнительными» с точки зрения интуиции основаниями, лишь бы в них правила вывода теорем были строго обоснованы. Формалисты полагали, что математика должна изучать как можно больше формальных систем. Формально-аксиоматические теории, построенные на основе классической логики, имеет смысл рассматривать лишь при отсутствии в них противоречий, поскольку в противном случае «доказанным» оказывается любое суждение теории. Если в такой формальной системе удаётся доказать логическую ложь то она находится противоречивой и «выбраковывается», что обесценивает любые доказанные в рамках данной системы теоремы. Разумеется, математиков волновал вопрос, можно ли каким-то образом доказать непротиворечивость теории. К досаде формалистов, было показано, что вопрос о противоречивости теории не имеет адекватного разрешения внутри любой из употребительных в математике формальных систем. Ничто не мешает изучать одну формальную теорию при помощи другой; такой подход называется метаматематическим. Однако, он вынуждает использовать для построения метатеорий наиболее надёжные основания, каковыми формалисты рассматривали, опять-таки, классическую логику и формальную арифметику. Таким образом, попытку формалистов уклониться от вопроса об интерпретации формальных теорий в рамках обоснования математики следует счесть неудачной. С начала 90-х годов XX века интерес к формализму (в более прикладном смысле) снова возрос в связи с задачами автоматического доказательства теорем (см. напр. en: QED manifesto). Форма́ льная ло́ гика — конструирование и исследование правил преобразования высказываний, сохраняющих их истинностное значение безотносительно к содержанию входящих в эти высказывания понятий. В истории философии — отдельный раздел или направление логики конца XIX—начала XX века. Иногда путают с символической, или математической логикой. ормалистами (представителями т. н. «логистики», оформившейся на Женевском конгрессе 1904 г. усилиями Л. Кутюра, А. Лаланда и др.) конца XIX — начала XX века формальность логики связывалась с выделением значений истинности высказываний при переносе их из естественного языка в символическую нотацию. Логистики стремились дать обоснование математическому знанию (и, возможно, в перспективе естествознанию) в пределах одной только формальной логики, существенные усилия в этом направлении были приложены Д. Гильбертом, Кутюра, Б. Расселом. Под формой вообще мы понимаем выражение, в которое по крайней мере одна переменная входит таким образом, что это выражение превращается в истинное или ложное высказывание вследствие того, что мы подставляем нечто на место этой переменной[3]. Это отличало формальную логику от иных дисциплин, также имеющих дело с формой, как-то лингвистика и такие математические дисциплины, как арифметика, геометрия, алгебра и анализ и пр. Соответственно, к формальной логике ими относились все те разделы логики, которые удалось формализовать в символических формах, разработанных в XIX—начале XX век математиками и логиками О. де Морганом, Дж. Булем, Дж. Пеано, Г. Фреге, Расселом и др. «За бортом» формальной логики оставались такие логические дисциплины, как диалектика (в её средневековой версии и различных нововременных вариантах), индуктивная логика (Дж. С. Милль) и другие варианты логики науки. Так понимаемая формальная логика переставала быть наукой о мышлении, и многими формалистами[4][5] последнее вовсе дезавуировалось как «психологическое» понятие, не имеющее отношения к логике как таковой, которая-де должна сосредоточиться на изучении и совершенствовании языка, на структурных, а не процессуальных свойствах речевых конструкций. Эта точка зрения нашла развитие во взглядах Венского кружка, Львовско-Варшавской школы и, далее, англосаксонской аналитической философии. Однако другими формалистами (в частности, большинством российских[ источник не указан 1101 день ]) она не разделялась. В то же время в 1910—20-х гг. претензии логистики на обоснование точного знания убедительно критиковались А. Пуанкаре[6] и, позднее, примкнувшим к нему в этой критике Гильбертом, после чего логистическое движение сошло на нет. Предмет формальной логики специально реконструировался и критиковался в работах Московского логического кружка [7] и затем Московского методологического кружка [8]. Критика касалась не уместности разработки формальной логики как таковой или её полезности, а полноты исчерпания ею логической проблематики и её претензий на роль теории мышления. Согласно реконструкции, проведённой в ММК, логика имеет дело с «языковым мышлением» (или, «языком взятым в функции мышления»), в котором группы определённым образом связанных между собой знаков по определённым законам замещают реальные объекты и друг друга в отношении к действиям: В 1930—40-е гг. формальная логика третировалась официальными философскими инстанциями как «теоретическая основа буржуазного мировоззрения»[11], нечто несовместимое с марксизмом и коммунистическими идеалами. Активной работы в соответствующих направления не было, традиции были утрачены, немногие остававшиеся в живых специалисты были вынуждены заниматься другими дисциплинами или были лишены условий для нормального научного общения. Ситуация несколько изменилась в 1946—47 гг., когда (по некоторым сведениям[12][13], по личному распоряжению И. В. Сталина) логика была введена в состав школьной программы[14] (был написан ряд учебников (В. Ф. Асмуса, К. С. Бакрадзе, М. С. Строговича) и даже в сокращенном или переработанном виде переизданы «буржуазные» учебники С. Н. Виноградова и Г. И. Челпанова). За этим последовало создание кафедры логики на Философском факультете Московского университета (в качестве одного из кандидатов на занятие кафедры рассматривался А. Ф. Лосев, хотя в конце концов занял её П. С. Попов), издание ряда книг по формально-логической тематике [15] и некоторые другие мероприятия[13]. Однако вокруг этой тематики с переменным успехом продолжалась борьба «диалектиков» и «формалистов». В 1950—60-е гг. формальная логика (уже уйдя из школы) обосновалась в вузах и исследовательских институтах. Выдающуюся роль в восстановлении логических исследований и преподавания логики в стране сыграли такие представители формалистического направления, как С. А. Яновская, А. С. Есенин-Вольпин, Ю. А. Гастев, А. А. Марков и др. Обратной стороной процесса стала контрреакция со стороны «формалистов» по отношению к логикам, стремившимся разрабатывать логику вне программы её формализации. Уже в 1960—70-е г. сложности с публикациями испытывали такие логики, как А. А. Зиновьев (вынужденный затем сменить язык и перейти на «математические» символы), Э. В. Ильенков (покинувший коллектив «Философской энциклопедии» в знак протеста против подмены логической проблематики математической) и др. До некоторой степени эта реакция продолжается даже в постсоветские годы[16].
|