Студопедия

Главная страница Случайная страница

КАТЕГОРИИ:

АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника






Лемма о высшем члене симметрического многочлена






Важное место в кольце многочленов от n переменных занимают симметрические многочлены. Оказывается, что множество всех симметрических многочленов образует подкольцо этого кольца.

Определение 30.1. Пусть - кольцо многочленов над ассоциативно-коммутативным кольцом K от n переменных . Многочлен f(х1, …, хn)∈ K [ х1, …, хn ] называется симметрическим, если он не изменяется при любых перестановках его переменных, т.е. = , для любой перестановки символов .

Нетрудно показать, что сумма, разность, произведение симметрических многочленов от n переменных является симметрическим многочленом. В самом деле, пусть и - симметрические многочлены и . Тогда = = многочлен является симметрическим. Таким образом, по критерию подкольца, множество всех симметрических многочленов от n переменных является подкольцом кольца , т.е. само является кольцом.

Лемма 30.1. Если - высший член симметрического многочлена , то .

Доказательство. Допустим, что . В многочлене произведем перестановку переменных и . Так как, при этом, многочлен не изменяется, то в существует одночлен , что невозможно. Следовательно, . Аналогично сравнивая и , получим . Продолжая этот процесс, получаем . Лемма доказана.


Поделиться с друзьями:

mylektsii.su - Мои Лекции - 2015-2025 год. (0.005 сек.)Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав Пожаловаться на материал