Главная страница Случайная страница КАТЕГОРИИ: АвтомобилиАстрономияБиологияГеографияДом и садДругие языкиДругоеИнформатикаИсторияКультураЛитератураЛогикаМатематикаМедицинаМеталлургияМеханикаОбразованиеОхрана трудаПедагогикаПолитикаПравоПсихологияРелигияРиторикаСоциологияСпортСтроительствоТехнологияТуризмФизикаФилософияФинансыХимияЧерчениеЭкологияЭкономикаЭлектроника |
Коефіцієнт детермінації
Вимірювання щільності нелінійного зв’язку ґрунтується на співвідношенні варіацій теоретичних та емпіричних значень результативної ознаки. Відхилення індивідуального значення ознаки від середньої можна розкласти на дві складові. У регресійному аналізі це відхилення від лінії регресії та відхилення лінії регресії від середньої . Відхилення є наслідком дії фактора , відхилення – наслідком дії інших факторів. Взаємозв’язок факторної та залишкової варіації описується правилом декомпозиції варіацій: загальну дисперсію результативної ознаки можна розкласти на дві частини - дисперсію, що пояснює регресію, та дисперсію помилок: де – загальна дисперсія; – факторна дисперсія; – залишкова дисперсія, або дисперсія помилок. Очевидно, значення факторної дисперсії буде тим більшим, чим сильніший вплив фактора та . Поділивши обидві частини на загальну дисперсію, отримаємо: Перша частина цього виразу являє собою частину дисперсії, яку не можна пояснити через регресійний зв’язок, друга - частину дисперсії, яку можна пояснити, виходячи з регресії. Вона називається коефіцієнтом детермінації і використовується як критерій адекватності моделі, бо є мірою пояснювальної сили незалежної змінної: Для лінійного зв’язку: . Якщо значення коефіцієнта детермінації близьке до одиниці, то можна вважати, що побудована модель адекватна (). Варіація на залежить від варіації , і на від варіації інших факторів, які не враховуються в моделі.
|